Constraining sterile neutrinos with multi-survey approach

Ninetta Saviano
Mainz University
Sterile Neutrinos

M_{GUT}

ν_s ν_a

$N_1 \rightarrow \phi^* + N_1 \rightarrow L + L \rightarrow L$

eV keV TeV

Ninetta Saviano
Sterile Neutrinos

M_{GUT}

eV

keV

TeV

Ninetta Saviano
Multi-surveys approach

Astrophysical sources

Laboratory

Vs & properties

Cosmology

Ninetta Saviano
Multi-surveys approach

Astrophysical sources

Laboratory

Vs & proprieties

Ninetta Saviano
Multi-surveys approach

Astrophysical sources

Laboratory

Vs & proprieties

Ninetta Saviano
The investigation on Light Sterile Neutrinos has been stimulated by the presence of anomalous results from neutrino oscillation experiments (LNSD, MiniBoone, Gallium, Reactor) see White paper, Abazajian et al., 2012...

Interpretation: 1 (or more) sterile neutrino with $\Delta m^2 \sim O (eV^2)$ and $\theta_s \sim O (\theta_{13})$
The investigation on Light Sterile Neutrinos has been stimulated by the presence of anomalous results from neutrino oscillation experiments (LNSD, MiniBoone, Gallium, Reactor) see White paper, Abazajian et al., 2012 ...often in tension among themselves...

New bad mews are coming from IceCube, Minos, Daya Bay...

Interpretation: 1 (or more) sterile neutrino with $\Delta m^2 \sim O(eV^2)$ and $\theta_s \sim O(\theta_{13})$

Are eV ν_s compatible with cosmology?
Cosmological observations

Sensitivity to \(N_{\text{eff}} \) and \(\nu \) flavour (spectra)

Sensitivity to \(N_{\text{eff}} \) and \(\nu \) masses
(and to other proprieties, i.e. neutrino interactions…)
Radiation Content in the Universe

At $T < m_e$, the radiation content of the Universe is

$$\varepsilon_R = \varepsilon_\gamma + \varepsilon_\nu + \varepsilon_x$$

The non-e.m. energy density is parameterized by the effective numbers of neutrino species N_{eff}

$$\varepsilon_\nu + \varepsilon_x = \frac{7}{8} \frac{\pi^2}{15} T_\nu^4 N_{\text{eff}} = \frac{7}{8} \frac{\pi^2}{15} T_\nu^4 (N_{\text{eff}}^{\text{SM}} + \Delta N)$$

$$N_{\text{eff}}^{\text{SM}} = 3.046 \text{ due to non-instantaneous neutrino decoupling}$$

(De Salas & Pastor, 2016)

$$N_{\text{eff}}^{\text{SM}} = 3.045 \text{ after a recent recalculation}$$

$\Delta N = $ Extra Radiation: axions and axion-like particles, **sterile neutrinos** (totally or partially thermalized), neutrinos in very low-energy reheating scenarios, relativistic decay products of heavy particles...
Impact on Big Bang Nucleosynthesis

At $T \sim 1 - 0.01$ MeV, production of the primordial abundances of light elements, in particular 2H, 4He.

When $\Gamma_{n \rightarrow p} < H \rightarrow $ neutron-to-proton ratio freezes out

\[
\frac{n_n}{n_p} = \frac{n}{p} = e^{-\Delta m/T} \rightarrow 1/7
\]
Impact on Big Bang Nucleosynthesis

At $T \sim 1 - 0.01$ MeV, production of the primordial abundances of light elements, in particular 2H, 4He.

When $\Gamma_{n \rightarrow p} < H \Rightarrow \text{neutron-to-proton ratio freezes out}$

$$\frac{n_n}{n_p} = \frac{n}{p} = e^{-\Delta m/T} \rightarrow 1/7$$

Sterile ν influence on BBN:
Impact on Big Bang Nucleosynthesis

At $T \sim 0.01$ MeV production of the primordial abundances of light elements, in particular ^2H, ^4He

When $\Gamma_{n \leftrightarrow p} < H \Rightarrow \text{neutron-to-proton ratio freezes out}$

$$\frac{n_n}{n_p} = \frac{n}{p} = e^{-\Delta m/T} \rightarrow 1/7$$

Sterile ν influence on BBN:

- contribution to the radiation energy density governing H before and during BBN

$$N_{\text{eff}} \uparrow \rightarrow H \uparrow \rightarrow \text{early freeze out} \rightarrow \frac{n}{p} \uparrow \rightarrow ^4\text{He} \uparrow$$

$$Y_p = \frac{2n/p}{1 + n/p}$$

Helium mass fraction
Impact on Big Bang Nucleosynthesis

At $T \sim 1 - 0.01$ MeV production of the primordial abundances of light elements, in particular 2H, 4He

When $\Gamma_{n\leftrightarrow p} < H$ → neutron-to-proton ratio freezes out

$$\frac{n_n}{n_p} = \frac{n}{p} = e^{-\Delta m/T} \rightarrow 1/7$$

Sterile ν influence on BBN:

- contribution to the radiation energy density governing H before and during BBN

$$N_{\text{eff}} \uparrow \Rightarrow H \uparrow \Rightarrow \text{early freeze out} \Rightarrow \frac{n}{p} \uparrow \Rightarrow ^4\text{He} \uparrow$$

- oscillating with the active neutrinos, can distort the active spectra which are the basic input for BBN
Impact on Big Bang Nucleosynthesis

At $T \sim 0.01$ MeV production of the primordial abundances of light elements, in particular ^2H, ^4He

When $\Gamma_{n\rightarrow p} < H \quad \rightarrow \text{neutron-to- proton ratio freezes out}$

\[
\frac{n_n}{n_p} = \frac{n}{p} = e^{-\Delta m / T} \rightarrow 1/7
\]

Sterile ν influence on BBN:

- contribution to the radiation energy density governing H before and during BBN

\[\text{N}_{\text{eff}} \uparrow \Rightarrow \text{H} \uparrow \Rightarrow \text{early freeze out} \Rightarrow \frac{n}{p} \uparrow \Rightarrow ^4\text{He} \uparrow\]

- oscillating with the active neutrinos, can distort the active spectra which are the basic input for BBN

BBN constraint on ΔN_{eff}: NO strong preference

$\Delta N_{\text{eff}} \leq 1 \quad (95\% \ C.L.)$

Hamann et al, 2011, Mangano and Serpico, 2012

From new precise measure of D in damped Lyman-α system

$N_{\text{eff}} = 3.28 \pm 0.28$, 1 extra d.o.f. ruled out at 99.3 C.L.

Cooke, Pettini et al., 2013
Impact on CMB

- If sterile neutrinos are still relativistic at the CMB epoch, they impact the CMB spectrum.

\[N_{\text{eff}} \text{ affect the time of } \text{matter-radiation equality} \rightarrow \text{consequences on the amplitude of the first peak and on the peak locations} \]

- Neutrino mass (background and perturbation level, suppression of the lensing…)

- Neutrino Interactions

Same data used to measure other cosmological parameters

→ better to combine with other cosmological probes
Impact on the LSS

The small-scale matter power spectrum $P(k > k_{nr})$ is reduced in presence of massive ν:

- free-streaming neutrinos do not cluster
- slower growth rate of CDM (baryon) perturbations

$\Delta P(k)/P(k) \simeq -8 f_\nu$

$f_\nu = \frac{\rho_\nu}{(\rho_{cdm} + \rho_b + \rho_\nu)} = \frac{\Omega_\nu}{\Omega_m}$
Joint constraints on N_{eff} and $m_{\nu_s}^{\text{eff}}$

<table>
<thead>
<tr>
<th>model</th>
<th>Planck TT +</th>
<th>mass bound (eV) (95% C.L.)</th>
</tr>
</thead>
</table>
| Joint analysis N_{eff} & 1 mass ν_s (prior $m_{\nu_s}^{\text{ph}} < 10$ eV) | lowP+lensing+BAO | $N_{\text{eff}} < 3.7$
$m_{\nu_s}^{\text{eff}} < 0.52$ |
| Joint analysis N_{eff} & 1 mass ν_s (prior $m_{\nu_s}^{\text{ph}} < 2$ eV) | lowP+lensing+BAO | $N_{\text{eff}} < 3.7$
$m_{\nu_s}^{\text{eff}} < 0.38$ |

Planck XIII, 2015

$m_{\nu_s}^{\text{eff}} \equiv (94, 1 \, \Omega_\nu h^2) \text{eV}$

$m_{\nu_s}^{\text{eff}} = \rho_{ss} \, m_{\nu_s}^{\text{ph}}$

Hamann and Hasenkamp, 2013

$\Delta N_{\text{eff}} = 0.61 \pm 0.30$

$m_{\nu_s}^{\text{eff}} = 0.41 \pm 0.13$ eV (68% C.L.)

all = CMB+H0+ C+ CFHTLens

L. Verde et al, 2014

$m_{\nu_s}^{\text{eff}} < 0.3$ eV (95% C.L.)

Less stringent mass bound from combined analysis $\rightarrow m_{\nu_s}^{\text{eff}} < 0.6$ eV
The investigation on Light Sterile Neutrinos has been stimulated by the presence of anomalous results from neutrino oscillation experiments (LNSD, MiniBoone, Gallium, Reactor) see White paper, Abazajian et al., 2012.

...often in tension among themselves...

Interpretation: 1 (or more) sterile neutrino with $\Delta m^2 \sim O(\text{eV}^2)$ and $\theta_s \sim O(\theta_{13})$

Are eV ν_s compatible with cosmology?
Active-sterile flavour evolution

Sterile ν are produced in the Early Universe by the mixing with the active species in presence of collisions

Evolution equation:

$$i \frac{d\rho}{dt} = [\Omega, \rho] + C[\rho]$$

$$\Omega = \Omega_{\text{vac}} + \Omega_{\text{mat}} + \Omega_{\nu-\nu} + \ldots$$

Vacuum term

MSW effect with background medium (refractive effect)

refractive $\nu-\nu$ self-interactions term

Collisional term

creation, annihilation and all the momentum exchanging processes

(3+1) Scenario

$$\rho_p = \begin{pmatrix}
\rho_{ee} & \rho_{e\mu} & \rho_{e\tau} & \rho_{es} \\
\rho_{e\mu} & \rho_{\mu\mu} & \rho_{\mu\tau} & \rho_{\mu s} \\
\rho_{e\tau} & \rho_{\tau\mu} & \rho_{\tau\tau} & \rho_{\tau s} \\
\rho_{es} & \rho_{s\mu} & \rho_{s\tau} & \rho_{ss} \\
\end{pmatrix}$$

ν ensemble

Stodolsky, Raffelt and Sigl, 1992; Sigl and Raffelt 1993;
For the mass and mixing parameters preferred by laboratory sterile ν are copiously produced, reaching 1 extra d.o.f.

Comparing with the cosmological bounds:

Thermalized sterile ν with $m \sim O(1 \text{ eV})$ strongly disfavored by cosmological constraints

- 3+1: Too *many* for BBN and too *heavy* for LSS/CMB
- 3+2: Too *heavy* for LSS/CMB and too *many* for BBN/CMB
The investigation on Light Sterile Neutrinos has been stimulated by the presence of anomalous results from neutrino oscillation experiments (LNSD, MiniBoone, Gallium, Reactor) see White paper, Abazajian et al., 2012

...often in tension among themselves...

Interpretation: 1 (or more) sterile neutrino with $\Delta m^2 \sim O(\text{eV}^2)$ and $\theta_s \sim O(\theta_{13})$

Are eV ν_s compatible with cosmology? NO
Possible solutions...?

- **Different mechanisms to suppress the ν_s abundance:**

 1. **large $\nu-\bar{\nu}$ asymmetries**

 In the presence of large $\nu-\bar{\nu}$ asymmetries ($L \sim 10^{-2}$) sterile production strongly suppressed. Mass bound can be evaded.

 2. **“secret” interactions for sterile neutrinos**

 3. **low reheating scenario**

 Sterile abundance depends on reheating temperature.

- **Modification of cosmological models**

 Inflationary Freedom

 Shape of primordial power spectrum of scalar perturbations different from the usual power-law.

 Efficacy reduced by more recent paper.

 Ninetta Saviano
Possible solutions...?

- **Different mechanisms to suppress the ν_s abundance:**

 1. **large $\nu-\bar{\nu}$ asymmetries**

 In the presence of large $\nu-\nu$ asymmetries ($L \sim 10^{-2}$) sterile production strongly suppressed. Mass bound can be evaded.

 2. **“secret” interactions for sterile neutrinos**

 3. **low reheating scenario**

 Sterile abundance depends on reheating temperature.

- **Modification of cosmological models**

 - **Inflationary Freedom**

 Shape of primordial power spectrum of scalar perturbations different from the usual power-law.
Possible solutions...?

Different mechanisms to suppress the ν_s abundance:

1. **large $\nu-\bar{\nu}$ asymmetries**

 In the presence of large $\nu-\bar{\nu}$ asymmetries ($L \sim 10^{-2}$) sterile production strongly suppressed. Mass bound can be evaded.

2. **“secret” interactions for sterile neutrinos**

3. **low reheating scenario**

 Sterile abundance depends on reheating temperature.

Modification of cosmological models

Inflationary Freedom

Shape of primordial power spectrum of scalar perturbations different from the usual power-law.
Sterile production with primordial neutrino asymmetry

Foot and Volkas, 1995

Introducing

\[
L = \frac{n_\nu - n_\bar{\nu}}{n_\gamma}
\]

Suppress the thermalization of sterile neutrinos \((\rho_{ss} \downarrow)\)

(Effective \(\nu_a-\nu_s\) mixing reduced by large matter term \(\propto L\))

Caveat: \(L\) can also generate MSW-like resonant flavour conversions among active and sterile neutrinos enhancing their production

A possible answer: primordial neutrino asymmetry

\[
\Omega = \Omega_{\text{vac}} + \Omega_{\text{mat}} + \Omega_{\nu - \nu} \quad \text{asymmetric term} \propto (\rho - \bar{\rho}) = L
\]

large \(L\) are necessary to reach the suppression
Sterile production by neutrino asymmetry

ρ_{ss} and spectra of active neutrinos (in particular ν_e) as function of the ν asymmetry parameter. → evaluation of the cosmological consequences

Very large asymmetries are necessary to suppress the sterile neutrino abundances leading to **non trivial consequences on BBN**

$$L_\alpha \approx 0.68 \xi_\alpha \left(\frac{T_r}{T_\gamma} \right)^3$$
Sterile production by neutrino asymmetry

ρ_{ss} and spectra of active neutrinos (in particular ν_e) as function of the ν asymmetry parameter. \Rightarrow evaluation of the cosmological consequences

Very large asymmetries are necessary to suppress the sterile neutrino abundances leading to non trivial consequences on BBN

Conversions occur at $T \sim T_\nu$ decoupling
\Rightarrow active not repopulated anymore by collisions ($\rho_{ee} < 1$)
Consequences on BBN

\[\xi_e = \xi_\mu = 10^{-2} \]

\(\nu_e \) spectra distorted \(\rightarrow \) implications on BBN

\[L_\alpha \simeq 0.68 \xi_a \left(\frac{T_e}{T_\gamma} \right)^3 \]

\(\nu_e \) spectra distorted \(\rightarrow \) implications on BBN
Consequences on BBN

\[\nu_e \text{ spectra distorted} \rightarrow \text{implications on BBN} \]

\[Y_p = \frac{2(n/p)}{1+n/p} \]

Helium mass fraction

\[Y_p \uparrow \text{with respect to the standard BBN and also to the BBN + L (no } \nu_s) \]

\[H^2 \uparrow \text{with respect to the standard BBN and also to the BBN + L (no } \nu_s) \]
Consequences on BBN

\[L_\alpha \simeq 0.68 \xi_\alpha \left(\frac{T_e}{T_\gamma} \right)^3 \]

\[\nu_e \text{ spectra distorted} \quad \rightarrow \quad \text{implications on BBN} \]

\[Y_p = \frac{2(n/p)}{1+n/p} \]

Helium mass fraction

\[Y_p \quad \uparrow \quad \text{with respect to the standard BBN and also to the BBN + L (no } \nu_s) \]

\[H^2 \quad \uparrow \quad \text{with respect to the standard BBN and also to the BBN + L (no } \nu_s) \]

The suppression of \(\nu_s \text{ by L asymmetry } \) is not for free -> difficult to accomodate with BBN
Possible solutions...?

• *Different mechanisms to suppress the ν_s abundance:*

1. **large ν–$\bar{\nu}$ asymmetries**

 In the presence of large ν–$\bar{\nu}$ asymmetries ($L \sim 10^{-2}$) sterile production strongly suppressed. Mass bound can be evaded.

2. **“secret” interactions for sterile neutrinos**

3. **low reheating scenario**

 sterile abundance depends on reheating temperature

• *Modification of cosmological models*

 Inflationary Freedom

 Shape of primordial power spectrum of scalar perturbations different from the usual power-law
Secret interactions for sterile neutrinos

Different authors have assumed the Standard Model (SM) is augmented by one extra species of light (\sim eV) neutrinos ν_s, which do not couple to the SM gauge bosons but experiment a new force.

$\textit{Hannestad et al., 2013, Dasgupta and Kopp 2013, Bringmann et al., 2014}$

Such a new interaction can have profound effects on active-sterile neutrino conversion in the early Universe, since sterile ν feel a new potential that can suppresses active-sterile mixing (through an effective ν_a-ν_s mixing reduced by a large matter term).

Caveat: they also generate $\textit{MSW resonance}$ and $\textit{strong collisional production}$, increasing their abundance, with non trivial consequences on the cosmological observables

$\to \nu SI$ constraints from cosmological probes

If the new mediator interaction X also couples to Dark Matter possible attenuation of some of the small scale structure problems (“missing satellites” problem...)
new secret self-interactions among sterile ν mediated by a **massive gauge boson X**:

\[G_X = \frac{\sqrt{2}}{8} \frac{g_X^2}{M_X^2} \quad \text{for } T < M_X \]

Evolution equation:

\[
\frac{i}{dt} \frac{d\rho}{d\rho} = [\Omega, \rho] + C[\rho]
\]

\[
\Omega = \Omega_{\text{vac}} + \Omega_{\text{mat}} + \Omega_{\nu-\nu} + \Omega_{\nu_s-\nu_s}^{\text{Secr}} \propto G_X
\]

\[
C[\rho] = C_{\text{SM}} + C_{\text{Secr}} \propto G_X^2
\]
SI in the flavour evolution

new secret self-interactions among sterile ν mediated by a **massive gauge boson X**:

$$\nu_s - \nu_s \text{ interaction strength } G_X = \frac{\sqrt{2}}{8} \frac{g_X^2}{M_X^2} \text{ for } T < M_X$$

Evolution equation:

$$i \frac{d\rho}{dt} = [\Omega, \rho] + C[\rho]$$

$$\Omega = \Omega_{vac} + \Omega_{mat} + \Omega_{\nu-\nu} + \Omega_{\nu_s-\nu_s}$$

$$C[\rho] = C_{SM} + C_{Secr} \propto G_X$$
Constraints for sterile nSI (Vector boson)

- BBN
- Mass Constraints
- CMB + no free-str.
UNVEILING SECRET INTERACTIONS AMONG STERILE neutrino conversions occur at MeV, where $\rho_{ee} > 0$.

A. Data and analysis

As known, BBN proceed in two basic steps. At the MeV scale weak processes maintaining chemical equilibrium tend to repopulate the active sector, producing a final a collisional regime, though close to decoupling, this effect in a temperature range where the active neutrinos are still in equilibrium with equal density of actives and sterile neutrino sector, the system tends to evolve towards a flavor

FIG. 4 (color online). The asymptotic values of ΔN_{eff}

Saviano, Pisanti, Mangano, Mirizzi 2014
BBN constraints for sterile νSI (vector)

After the ν oscillation in the range of g_x and G_X relevant for BBN, we have both:

$$\Delta N_{\text{eff}} > 0 \quad \text{and} \quad \text{distortions of the active } \nu_e \text{ spectra}$$

Deuterium yield

Experimental reference value:

$$^2\text{H}/\text{H} = (2.53 \pm 0.04) \times 10^{-5}$$

Translating in a bound for the mediator mass:

mass permitted: $M_X \leq 40$ MeV

Planck best fit $\Omega_b h^2 = 0.02207$

ParthENoPE code

Pisanti et al, 2012

Saviano, Pisanti, Mangano, Mirizzi 2014
Mass constraints for sterile νSI (vector)

Constraint on lower $M_X \leftrightarrow$ very large $G_X (> 10^5 G_F)$

Very strong secret collisional term leads to a quick flavor equilibrium

\[
\begin{align*}
(r_{ee}, r_{\mu\mu}, r_{\tau\tau}, r_{ss})_{\text{initial}} & \rightarrow (r_{ee}, r_{\mu\mu}, r_{\tau\tau}, r_{ss})_{\text{final}} \\
(1, 1, 1, 0) & \rightarrow (3/4, 3/4, 3/4, 3/4)
\end{align*}
\]

The flavour evolution leads to a large population of ν_s, in conflict with the cosmological mass bound

\[
m^{\text{eff}}_{ss} = r_{ss} \sqrt{\Delta m^2_{st}} = \frac{3}{4} \sqrt{\Delta m^2_{st}} \quad \text{lower value in the 2\sigma range from anomalies gives} \quad m^{\text{eff}}_s \sim 0.8 \text{ eV}
\]

in tension with the CMB and LSS conservative bounds on sterile mass (< 0.6 eV)

Planck XVI, 2015, Hamann and Hasenkamp, 2013, Giusarma et al 2016...

Secret interaction scenario: disfavored $M_X > 0.1 \text{ MeV} \quad (\equiv \sim 10^9 G_F)$

Mirizzi, Mangano, Pisanti Saviano, 2014
A surprising effect on N_{eff}

After the production, ν_s have a “grey-body” spectrum ($\rho_{ss} = 3/4$)....

.... but the collisions and oscillations are still active pushing all neutrinos to a common FD distribution

Constraint: $n_{\nu \, \text{TOT}}$ must be constant

T_{ν} is reduced by a factor $(3/4)^{1/3}$, leading to an effect on the radiation density

\[
\epsilon_{\nu, \text{in}} = 3 \times \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \epsilon_{\gamma}
\]

\[
\epsilon_{\nu, \text{fin}} = 4 \times \left(\frac{3}{4} \right)^{4/3} \times \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \epsilon_{\gamma}
\]

\[N_{\text{eff}} \sim 4 \times \left(\frac{3}{4} \right)^{4/3} \sim 2.7\]

Mirizzi, Mangano, Pisanti Saviano, 2014
CMB constraints for sterile νSI (vector)

For $M_X \leq 0.1$ MeV ($\geq 10^{10}$ G_F) $\rightarrow \nu_s$ could be still coupled at CMB and LSS epoch \rightarrow possible no free-streaming.

We derive our mass bounds, taking into account neutrino scattering via secret interactions and we also take into account the increased density and pressure perturbations in the neutrino fluid, induced by collisions with strength $G_X = \frac{\sqrt{2} g_X^2}{8 M_X^2}$.

Scattering rates between mass eigenstates \rightarrow projection from the flavour basis through the mixing matrix

$$\nu_s \simeq \sin \theta_s \nu_1 + \cos \theta_s \nu_4$$
CMB constraints for sterile \(\nu_{SI} \) (vector)

Effect of interactions among neutrino species on the evolution of cosmological perturbations:

\[
\hat{L} [\delta f] = \hat{C} [\delta f]
\]

\[
\hat{\Psi}_{i,0} = -\frac{4}{3} \frac{q}{\epsilon} \Psi_{i,1} - \frac{2}{3} \dot{\epsilon},
\]

\[
\hat{\Psi}_{i,1} = k^2 \frac{q}{\epsilon} \left(\frac{1}{4} \Psi_{i,0} - \Psi_{i,2} \right),
\]

\[
\hat{\Psi}_{i,2} = \frac{q}{\epsilon} \left(\frac{4}{15} \Psi_{i,1} - \frac{3}{10} k \Psi_{i,3} \right) + \frac{2}{15} \dot{\epsilon} + \frac{4}{5} \dot{\eta} - \Gamma_{ij} \Psi_{j,2},
\]

\[
\hat{\Psi}_{i,\ell} = \frac{k}{2\ell + 1} \frac{q}{\epsilon} \left[\ell \Psi_{i, (\ell - 1)} - (\ell + 1) \Psi_{i, (\ell + 1)} \right] - \Gamma_{ij} \Psi_{j,\ell}
\]

\((\ell \geq 3)\)

As long as \(\Gamma > H \), interacting neutrinos behave as perfect fluid \(\rightarrow \) shear and higher moments are exponentially suppressed.

Net effect: density and pressure perturbations are enhanced with respect to the non-interacting case, propagating to the photon fluid, and thus to CMB anisotropies.
CMB constraints for sterile νSI (vector)

Forastieri, Lattanzi, Mangano, Mirizzi, Natoli, Saviano, 2017

<table>
<thead>
<tr>
<th>Description</th>
<th>SACDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard six-parameter ΛCDM, $N_{\text{eff}} = 3.046.$</td>
<td>ΛCDM</td>
</tr>
<tr>
<td>Sterile neutrino extension, $N_{\text{eff}} = 2.7$, m_s free, “small” G_X ($\sim 10^8 G_F$).</td>
<td>SACDM, $N_{\text{eff}} = 2.7$, m_s free, G_X free.</td>
</tr>
<tr>
<td>Sterile neutrino extension, $N_{\text{eff}} = 2.7$, G_X free.</td>
<td>SACDM, $N_{\text{eff}} = 2.7$, G_X free, $m_s = 1.27 \pm 0.03$ eV (gaussian prior).</td>
</tr>
<tr>
<td>Sterile neutrino extension, $N_{\text{eff}} = 2.7$, G_X free, 0.93 eV $\leq m_s \leq 1.43$ eV (flat prior).</td>
<td>SACDM_Broad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SACDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega_b h^2$</td>
<td>0.02197 \pm 0.00021</td>
</tr>
<tr>
<td>$\Omega_c h^2$</td>
<td>0.1144$^{+0.0016}_{-0.0015}$</td>
</tr>
<tr>
<td>$100 \theta_{MC}$</td>
<td>1.04332$^{+0.00099}_{-0.00063}$</td>
</tr>
<tr>
<td>τ</td>
<td>0.074 \pm 0.018</td>
</tr>
<tr>
<td>n_s</td>
<td>0.9392 \pm 0.0063</td>
</tr>
<tr>
<td>$\ln(10^{10} A_s)$</td>
<td>3.038 \pm 0.036</td>
</tr>
<tr>
<td>G_X / G_F</td>
<td>$< 1.97 \times 10^{10}$</td>
</tr>
<tr>
<td>m_s</td>
<td>< 0.29</td>
</tr>
<tr>
<td>H_0</td>
<td>65.26 \pm 0.68</td>
</tr>
</tbody>
</table>
CMB constraints for sterile ν_{SI} (vector)

Forastieri, Lattanzi, Mangano, Mirizzi, Natoli, Saviano, 2017
Summary Plot

$\nu_a \leftrightarrow \nu_s$ Recoupling

Inadequate ν_s free-streaming and CMB analysis

Large N_{eff}
D/H at BBN

Large Σm_{ν_s}
in CMB and LSS

see also Chu, Dasgupta & Kopp 2015
Refined calculations show that all **the parameter space seems to be excluded** (due also to the X-mediated s-channel process leading to efficient sterile neutrino production)

Chu et al., in preparation
Conclusions

- Neutrino cosmology is entering the precision epoch

\[N_{\text{eff}} \sim 3 \quad \text{and} \quad m_{\text{eff}_{\nu s}} < 0.6 \text{ eV} \]

- Thermalized eV sterile \(\nu \) \textit{incompatible} with cosmological bounds:
 Too many for BBN and CMB and too heavy for structure formation

- New exotics scenarios are required (primordial neutrino asymmetry, hidden interactions, inflationary freedom...)
 - However the reconciliation with cosmology is not guaranteed and in some cases disfavoured (neutrino asymmetry) and excluded (secret interactions)
THANK YOU
Effects of MINOS, IceCube and NEOS

IceCube effect in agreement with
Collin, Arguelles, Conrad, Shaevitz, PRL 117 (2016) 221801
4He yield

- Planck best fit $\Omega_b h^2 = 0.02207$
- 95% C.L. Planck range $\Omega_b h^2$

Experimental reference value: $Y_p = 0.2551 \pm 0.0022$

BBN constrains

D yield

Experimental reference value: $^2\text{H}/\text{H} = (2.53 \pm 0.04) \times 10^{-5}$

Uncertainty on the reaction $d(p, \gamma)^3\text{He} \rightarrow \sigma_{\text{th}} = 0.062 \times 10^{-5}$

$$\sigma = \sqrt{\sigma_{\text{exp}}^2 + \sigma_{\text{th}}^2}$$

Most of the parameter space excluded at 3σ $M_X \geq 40$ MeV

PArthENoPE code

Saviano, Pisanti, Mangano, Mirizzi 2014, ArXiv: 1409.1680
Connection with the DM

If a new force exists, it is plausible that not only (sterile) neutrinos, but also DM particles couple to it

"neutrinoophilic DM" \[\mathcal{L}_{\text{int}} \supset -g_{\chi} \bar{\chi} V \chi - g_{\nu} \bar{\nu} \bar{V} \nu \]

This scenario may solve all of the small-scale structure issues mentioned above. Indeed, the efficient scattering of DM would lead to late kinetic decoupling, delaying the formation of the smallest protohalos.

(Barions?)

Possible hint (very dependent on the set of data used): in pseudoscalar model, $10^{-6} \lesssim g_s \lesssim 10^{-5}$ would reconcile eV sterile ν, H_0, ν SI. Also link to the DM small scale problem.

Archidiacono et al. 2015
Pseudoscalar model

Sterile neutrino is coupled to a new light pseudoscalar with mass $m_\phi \ll 1\text{eV}$ with $\mathcal{L} \sim g_s \phi \bar{\nu} \gamma_5 \nu$.

Possible hint:

$10^{-6} \lesssim g_s \lesssim 10^{-5}$ would reconcile eV sterile ν, H_0

Also connection to the DM small scale problem.

Archidiacono et al. 2015,
Archidiacono et al. 2016
"scalar" νSI impact on IceCube spectra

Emitted spectra

\[\mathcal{L}_0(E) \propto E^{-\gamma} e^{-E/E_{\text{cut}}} \]

$\gamma = 2$ and $E_{\text{cut}} = 10^7$ GeV

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>0.3</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>M [MeV]</td>
<td>100</td>
<td>10</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>τ (1 PeV)</td>
<td>~ 0.7</td>
<td>~ 0.6</td>
<td>~ 0.2</td>
<td>~ 0.002</td>
</tr>
<tr>
<td>E_{res} [PeV]</td>
<td>50</td>
<td>0.5</td>
<td>0.045</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Ninetta Saviano

16