Daniel Lenz
Advances in Theoretical Cosmology in Light of Data
July 19

HI emission as a tracer of interstellar reddening

in collaboration with B. Hensley & O. Doré

arXiv:1706.00011
Which foregrounds do we care about?

"(...) the name of the game is component separation, not noise reduction"

H.K. Eriksen

- Dust and synchrotron foregrounds in CMB data
- De-lensing of CMB data for primordial gravitational waves
- CIB measurements
- Extinction for cosmological galaxy surveys
Reddening
E(B-V)

- $E(B-V) = \text{Extinction in B band} - \text{Extinction in V band}$
- More dust \Rightarrow larger $E(B-V)$
- $E(B-V)$ maps **essential for correcting observations for Galactic reddening**
Mapping E(B-V): Direct approach

- Find many sources with known spectrum (e.g. stars, passive galaxies)
- Measure spectra, attribute differences to dust
- E.g. Schlafly+ 2014 used 500 million stars from Pan-STARRS to measure reddening to 4.5 kpc

- Direct measurements are hard!
- Photometric/spectroscopic errors
- Ensuring sources lie behind full dust column
- Ensuring adequate number of sources have been measured
Dust emission as measure of E(B-V)

- E(B-V) is proportional to the dust column, so can convert dust column tracer to E(B-V)
- SFD used dust emission from IRAS to derive a calibration factor from FIR emission to E(B-V)
- Full-sky, high sensitivity measurements

Reddening map of Schlegel, Finkbeiner, and Davis (1998)
The SFD reddening map

- Requires a temperature correction to go from dust emission to a dust column density
- FIR emission may have contributions from Zodiacal Light and unresolved galaxies

Reddening map of Schlegel, Finkbeiner, and Davis (1998)
The SFD reddening map

- Requires a temperature correction to go from dust emission to dust density.
- FIR emission may have contributions from Zodiacal Light and unresolved galaxies.

References in the article
Citations to the Article (10169) (Citation History)
Refereed Citations to the Article
SIMBAD Objects (57)
Also-Read Articles (Reads History)
HEP/Spires Information

Translate This Page

Title: Maps of Dust Infrared Emission for Use in Estimation of Reddening
Authors: Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc

Reddening map of Schlegel, Finkbeiner, and Davis (1998)
HI emission as basis for E(B-V)

- Gas and dust are well-coupled in the ISM
- Perform an SFD-like analysis to convert HI emission to E(B-V)
- Resulting maps free from errors due to dust temperature, Zodi, and extragalactic emission
- Limited by non-HI gas along the line of sight
HI4PI Survey

- Merges data from Effelsberg and Parkes
- Replaces LAB as state-of-the-art full-sky HI survey
- Higher sensitivity & resolution, fewer systematics, full sampling

HI4PI collaboration (2017)
The E(B-V)/N_{HI} ratio

Pan-STARRS E(B-V), Schlafly+ (2014)

Star-based

\[E(B-V) \text{ [mag]} = 1.216^{+0.009}_{-0.009} \times N_{HI} \text{ [10}^{22} \text{ cm}^{-2}] + 0.015^{+0.0009}_{-0.0002} \]
\[\sigma \text{ [mag]} = 0.02406^{+0.00006}_{-0.00006} \]

Dust-based

\[E(B-V) \text{ [mag]} = 1.113^{+0.002}_{-0.002} \times N_{HI} \text{ [10}^{22} \text{ cm}^{-2}] + 0.0006^{+0.0001}_{-0.0001} \]
\[\sigma \text{ [mag]} = 0.00570^{+0.00001}_{-0.00001} \]
The \(\frac{E(B-V)}{N_{HI}} \) ratio

Pan-STARRS \(E(B-V) \), Schlafly+ (2014)

Star-based

\[
E(B-V) \text{ [mag]} = 1.216 \pm 0.009 \times N_{HI} \text{ [10}^{22} \text{ cm}^{-2}] + 0.015 \pm 0.0002 \\
\sigma \text{ [mag]} = 0.02406 \pm 0.00006
\]

Dust-based

\[
E(B-V) \text{ [mag]} = 1.113 \pm 0.002 \times N_{HI} \text{ [10}^{22} \text{ cm}^{-2}] + -0.000 \pm 0.0001 \\
\sigma \text{ [mag]} = 0.00570 \pm 0.00001
\]

Pan-STARRS E(B-V), Schlafly+ (2014)

SFD E(B-V)
The E(B-V) map

40% sky coverage, 16.1' resolution

Lenz, Hensley, Doré (2017, submitted)
Dust systematics

- Peek & Graves (2010) used SDSS passively evolving galaxies as "standard crayons"
- Correction to the SFD map at 4.5 deg
Dust systematics

Based on extragalactic sources

Based on galactic HI
HI systematics

Investigate systematics due to complex ISM physics
Model extensions

- Several large-scale data sets available, all of which do not significantly improve the model.
- A future work would need to combine multiphase gaseous data, FIR dust data, and Pan-STARRS/Gaia data.
When and why to use this extinction map

- New HI based extinction map
- In line with independent corrections, but much higher resolution and better sky coverage
- Yahata+ (2007) find correlation of SFD with large-scale structure
- For high latitudes, our map overcomes many of the SFD problems and is much more sensitive than stellar data-based E(B-V) maps