Cosmology from the Stratosphere

measurements of primordial gravitational waves and gravitational lensing from near space

Nordita
July 17, 2017

Jón E. Guðmundsson
The Oskar Klein Centre for Cosmoparticle Physics, Stockholm University

standing in for William Jones
Princeton University

on behalf of the SPIDER Collaboration
The Gold Standard
Terabytes of raw Planck data...

...compressed to a few 50MP images...
...reduced to about 10k coefficients (modes)...

...to which 6 parameters are fit...
But there are caveats...

- **Beyond LCDM — the early universe**
 - Pay no attention to the man behind the curtains
 - Mild indication of departure from LCDM
 - Inflation vs alternatives

- **Cosmological concordance**
 - The amplitude of linear fluctuations as measured at low redshift (with galaxy clusters and cosmic shear) appears significantly lower than that predicted by ΛCDM + CMB

- **Degeneracies with τ pose a limitation**
 - The optical depth of reionization is not well constrained, and degeneracies with cosmological parameters and neutrino mass are large

Future opportunities!

- Ωb
- Ωc
- τ
- Ωm
- H_0

National Geographic

Hildebrandt et al. (2016)

SuperBIT
The observational challenge

To clearly separate a primordial signal from more local sources we must

Constrain spectral energy distribution
The observational challenge

To clearly separate a primordial signal from more local sources we must

Constrain spectral energy distribution — Verify statistical isotropy

Commander dust intensity, 150 GHz
The observational challenge

To clearly separate a primordial signal from more local sources we must

Constrain spectral energy distribution — Verify statistical isotropy — Probe all angular scales

Lensing B-modes

Large scale polarization Reionization

Primordial gravitational waves

CLASS

LSPE

BICEP2 BICEP3

SPIDER

Keck Array

PIPER

SPIDER

AdvACT

SA
Primary characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky coverage</td>
<td>About 10 %</td>
</tr>
<tr>
<td>Scan rate (az)</td>
<td>3.6 deg/s at peak</td>
</tr>
<tr>
<td>Polarization modulation</td>
<td>Stepped cryogenic HWP</td>
</tr>
<tr>
<td>Detector type</td>
<td>Antenna-coupled TES</td>
</tr>
<tr>
<td>Multipole range</td>
<td>$10 < \ell < 300$</td>
</tr>
<tr>
<td>Observation time</td>
<td>16 days at 36 km</td>
</tr>
<tr>
<td>Limits on r^\dagger</td>
<td>0.03</td>
</tr>
</tbody>
</table>

† Assuming no foregrounds, at 99% confidence

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
<th>95</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescopes</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Bandwidth [GHz]</td>
<td>22</td>
<td>36</td>
</tr>
<tr>
<td>Optical efficiency</td>
<td>30-45%</td>
<td>30-50%</td>
</tr>
<tr>
<td>Angular resolution * [arcmin]</td>
<td>41.1</td>
<td>28.2</td>
</tr>
<tr>
<td>Number of detectors ‡</td>
<td>675</td>
<td>1188</td>
</tr>
<tr>
<td>Detector loading ‡ [pW]</td>
<td>≤ 0.25</td>
<td>≤ 0.35</td>
</tr>
<tr>
<td>Instrument NET [μK·rts]</td>
<td>7.1</td>
<td>5.3</td>
</tr>
</tbody>
</table>

* FWHM. ‡ Current channel cuts

‡ Including atmosphere, sleeve, window, and baffle
Long Duration Ballooning

- Circumpolar winds ~10 days/rev
- On average 20 day flights at 36 km

Why Ballooning?
- Space like loading (NET)
- Access to larger angular scales
- Wider frequency windows
- Preparation for SPB promised land

Why Antarctica?
- Continuous solar power
- Long flight times

At what price?
- Narrow launch windows
- Recovery difficulties
- Mass, power, and automation
Our trajectory
Feb 5, 2015 — data recovery

Fig. BAS
Nov 17, 2015 — payload recovery

Fig. Ed Young
Oct 13, 2016 — recycled aluminum
Observation regions

Fig. Sasha Rahlin
Polarization amplitude

- SPIDER scanned approximately 10% of the sky

Fig. Sasha Rahlin
SPIDER 150 GHz band: Temperature
Comparison to *Planck* HFI: Temperature

Reobserved HFI 143-GHz

Planck PR2 Maps, nominal Full Mission map
Stacking hot spots : SPIDER

Figure removed from online version.

PRELIMINARY
PRELIMINARY

Fig. Sasha Rahlin
Stacking hot spots: Planck

Reobserved HFI 100 GHz All Stack

Reobserved HFI 143 GHz All Stack

Fig. Sasha Rahlin
Figure removed from online version.
Figure removed from online version.
We detect polarized foregrounds
Recent limits on circular polarization

• Possible astrophysical V-pol production mechanisms:
 • Stellar remnant, galaxy cluster, and primordial magnetic fields, QED extensions, and so forth...

• Non-ideal half wave-plate partially transforms circular polarization to linear
 • Careful instrument characterization allows us to constrain circular polarization

• SPIDER improves limits by orders of magnitude

\[
\frac{k ((1)C_{\ell}^{
u}/(2\pi) [\mu K^2]
\]

\textbf{Nagy et al. (2017)}
\textit{arXiv:1704.00215}
SPIDER-2 development

- Receivers operating at 285 GHz are built and undergoing testing
- Project about 335 uKrts sensitivity per detector and 17 arcmin beam

(a) NIST OMTs and silicon platelete feedhorns

New cryostat built and leak tight!
SPB Ballooning

- Constant volume balloons
 - Stable altitude
- First science flight in 2016
- Potentially offers ~100 day flights
- Launch base in New-Zealand
- Intermediate latitudes
- Full diurnal cycles
- Payload mass ~1000 kg

First mid-latitude flight: March 2015, 33 days in air

Wanaka, New Zealand
44°42'S 169°09'E

Data from CSBF
SuperBIT Palestine 2016 Test Flight

- Deep, wide-field imager between 250-1000 nm
- Towards 0.5 meter class telescope flight on Super Pressure Balloon
 - Weak lensing mass calibrations for hundreds of clusters
 - Deep near-UV wide field imaging
 - Technical pathfinder for future 1.5 m class observatory
0.5 meter SuperBIT telescope:
Mapping speed \(\frac{1}{2} \times \) Hubble (5x less res)

1.5 meter (future) SuperBIT telescopes:
Mapping speed 40 x Hubble (2x less res)
SPIDER summary

• SPIDER is a completely autonomous payload
 • Electrical power, pointing control and reconstruction, redundant data systems (100 GB/day), cryogenic single-crystal sapphire polarization modulators
• Most sensitive microwave receiver to date
• Weighs a bit over 3.5 tons
 • Over 500 kg cooled to 4 K
 • About 30 kg cooled to 250 mK
• About 15 km of cryogenic wiring
• Hand-made with love (most of the time)
• Subsequent flight planned for 2018
Stay tuned!