Higgs inflation and gravitational degrees of freedom

Syksy Räsänen

University of Helsinki Department of Physics
and The Helsinki Institute of Physics
Using what you have

\[S = \int d^4 x \sqrt{-g} \left(\frac{1 + \xi \phi^2}{2} g^{\alpha \beta} R_{\alpha \beta} - \frac{1}{2} g^{\alpha \beta} \nabla_\alpha \phi \nabla_\beta \phi - V(\phi) \right) \]

\[V(\phi) = \frac{\lambda}{4} \phi^4 \]

- Inflation with the Standard Model Higgs uses the only known scalar field that may be elementary. (Bezrukov and Shaposhnikov: 0710.3755)

- Non-minimal coupling \(\xi \phi^2 \) makes the Einstein frame potential exponentially flat.
 - The coupling constant \(\xi \) only affects the amplitude.
 - Reheating is known, so no ambiguity in \(N \). (Figueroa et al: 1504.04600)

- The classical predictions are in excellent agreement with observations: \(n_s = 0.96, \ r = 5 \times 10^{-3} \).
When the action is not enough

- Complication: classical low-energy action is not enough to specify the theory.

\[S = \int d^4x \sqrt{-g} \left(\frac{1 + \xi \phi^2}{2} g^{\alpha\beta} R_{\alpha\beta} - \frac{1}{2} g^{\alpha\beta} \nabla_\alpha \phi \nabla_\beta \phi - V(\phi) \right) \]

\[V(\phi) = \frac{\lambda}{4} \phi^4 \]

- Two sources of ambiguity.
 - Quantum theory: how to calculate loop corrections?
 - General relativity: what are the gravitational degrees of freedom?
Loop-corrected potential

\[V(\phi) \]

- Different inflationary possibilities:
 - Plateau: apparently not spoiled by loops.
 - Inflection point: can give \(r \sim 0.1 \).
 - False vacuum: new physics needed for graceful exit.
 - Hilltop: under investigation. (Enckell, Enqvist, SR, Tomberg)

\[\frac{\xi \phi^2}{1 + \xi \phi^2} \]
The many faces of Einstein gravity

\[
S = \int d^4 x \sqrt{-g} \left(\frac{1 + \xi \phi^2}{2} g^{\alpha\beta} R_{\alpha\beta}(g, \partial g, \partial^2 g) - \frac{1}{2} g^{\alpha\beta} \nabla_\alpha \phi \nabla_\beta \phi - V(\phi) \right)
\]

- Usually the gravitational degrees of freedom are taken to be the metric and its first derivative.

- In the Palatini formalism, the metric and the connection are independent degrees of freedom.

- In the Einstein-Hilbert case, metric and Palatini formalisms are equivalent.

- With a non-minimally coupled scalar field, they give different physical theories. (Bauer and Demir: 0803.2664)
The many faces of Einstein gravity

\[S = \int d^4x \sqrt{-g} \left(\frac{1 + \xi \phi^2}{2} g^{\alpha\beta} R_{\alpha\beta}(\Gamma, \partial \Gamma) - \frac{1}{2} g^{\alpha\beta} \nabla_\alpha \phi \nabla_\beta \phi - V(\phi) \right) \]

- Usually the gravitational degrees of freedom are taken to be the metric and its first derivative.

- In the Palatini formalism, the metric and the connection are independent degrees of freedom.

- In the Einstein-Hilbert case, metric and Palatini formalisms are equivalent.

- With a non-minimally coupled scalar field, they give different physical theories. (Bauer and Demir: 0803.2664)
In both cases, the Einstein frame is reached with the conformal transformation $g_{\alpha\beta} = (1 + \xi \phi^2)^{-1} \tilde{g}_{\alpha\beta}$.

In the Palatini case, the conformal transformation does not affect the Ricci tensor.

Therefore we get a different Einstein frame potential.

On the plateau, both give $n_s = 1 \text{-} 2/N = 0.96$, but r is different:

- Metric: $r = 12/N^2 = 5 \times 10^{-3}$
- Palatini: $r = 2/(\xi N^2) = 8 \times 10^{-4}/\xi$ \hspace{1cm} ($\lambda/\xi = 10^{-10}$)
Inflection point inflation: metric vs. Palatini

- Metric formulation range of r is within reach of next generation experiments, Palatini not.

 (SR and Wahlman)

 (Colour shows the running of the spectral index $\alpha_s = 0.01\pm0.01$.)
Higgs inflation uses only the known particle physics and gravitational degrees of freedom.

Metric formalism value for r will be tested by next generation CMB experiments.

The issue of quantum corrections is not settled.
 - Consistency conditions between cosmology and colliders.

Have to specify the gravitational degrees of freedom.
 - Formulations that are equivalent for Einstein gravity differ when there is a non-minimally coupled scalar: Palatini, teleparallel, ...
 - CMB observations can be used to determine the gravitational degrees of freedom.