Simplifying the EFT of Inflation:

Generalized Disformal Transformations

and

Redundant Couplings

with P. Creminelli and F. Vernizzi, 1706.03578 (submitted to JCAP)

Stockholm, July 20th 2017
Field Redefinitions

Inflationary observables: super-horizon correlation functions

\[\langle \zeta(\tau, k) \zeta(\tau, -k) \rangle, \ \langle \gamma(\tau, k) \gamma(\tau, -k) \rangle \]

\[\langle \zeta(\tau, k_1) \zeta(\tau, k_2) \zeta(\tau, k_3) \rangle, \ldots \]

\[|k_i \tau| \ll 1 \]

Freedom to perform redefinitions of \(\zeta \) and \(\gamma \) that decay outside the horizon. (e.g.: \(\zeta \rightarrow \zeta + \lambda \frac{d\zeta}{dt} \))

\[\downarrow \]

Used to simplify the action!
EFT of Inflation

- Single clock: $\phi(t)$ → Time Diff.s

Unitary Gauge: perturbations are eaten by the metric.

- Focus on
 - Quadratic and cubic operators
 - Up to second order in derivatives.

\[
L = \frac{M_{\text{Pl}}^2}{2} \left[R + 2\dot{H}g^{00} - 2(3H^2 + \dot{H}) \right] + \ldots
\]

Cheung et al., 07
Field redefinitions

Most generic transformation ...

\[g_{\mu\nu} \rightarrow C(t, N, K, \ldots) g_{\mu\nu} + D(t, N, K, \ldots) n_\mu n_\nu + E(t, N, K, \ldots) K_{\mu\nu} + \ldots \]

... generates operators with too many derivatives!

\[\delta S_{\text{EH}} = \frac{M_{\text{Pl}}^2}{2} \int d^4 x \sqrt{-g} \, G_{\mu\nu} \delta g^{\mu\nu} \]

To preserve the # of derivatives in the action:

\[g_{\mu\nu} \rightarrow (f_1 + f_3 \delta N + f_5 \delta N^2) g_{\mu\nu} + (f_2 + f_4 \delta N + f_6 \delta N^2) n_\mu n_\nu \]

\[(g^{00} \approx -1 + 2\delta N) \]
An example

\[\mathcal{L}[g] = \mathcal{L}_{\text{EH+}\phi}[g] + c_R (3)R \delta N + c_K \delta N \delta K_{\mu\nu} \delta K^{\mu\nu} \]

Redefine \(g_{\mu\nu} \rightarrow \tilde{g}_{\mu\nu} = (1 + f_3 \delta N) g_{\mu\nu} + (1 + f_4 \delta N) n_\mu n_\nu \)

\[\mathcal{L}[g] = \mathcal{L}_{\text{EH+}\phi}[g] + \left(c_R - \frac{f_3}{2} + \frac{f_4}{4} \right) (3)R \delta N + \left(c_K - \frac{f_3}{2} - \frac{f_4}{4} \right) \delta N \delta K_{\mu\nu} \delta K^{\mu\nu} \]

Use \(f_3 \) and \(f_4 \) to set to zero the couplings!

Observables do not depend on \(c_K \) and \(c_R \)!
EFTI up to cubic order in perturbations and 2 derivatives

- After integration by parts: 17 operators.

 6 field redefinitions \((f_i) \) \rightarrow 6 redundant couplings!

 Minimal set: 11 operators!

- Predictions for \(\langle \gamma \gamma \rangle \) and \(\langle \gamma \gamma \gamma \rangle \) are the same as Einstein-Hilbert.

- All the couplings contributing to scalar-tensor-tensor action beyond EH can be removed.

 \(\langle \zeta \gamma \gamma \rangle \) is not fixed!

 Still affected by changes in the scalar sector.

Creminelli, Gleyzes, Noreña, Vernizzi, 14
Diff-like field redefinitions

Assume the action dominated by operators with no derivatives acting on the metric $P(X)$

$$L = L_{EH} + M_1^4 \delta N^2 + M_2^4 \delta N^3 + "small corrections"$$

$x = -\frac{1}{2} \partial_\mu \phi \partial^\mu \phi$

Additional transformations that mimic a time diff.:

$$\delta g_{\mu \nu} = \nabla_\mu \xi_\nu \quad \xi_\mu = F(t, \delta N, K) \eta_\mu$$

We remain at 2-derivative order!

- 6 transformations.
- Only three higher-derivative corrections.
Higher order in derivatives

Focus on tensor modes (assume \(\mathcal{P} \))

- 3-derivative level

\[\langle \gamma \gamma \rangle \text{ does not change.} \]

Just 1 operator contributes to \(\langle \gamma \gamma \gamma \rangle : \delta K_{\mu \nu}^3 \)

- 4-derivative level

Only 1 operator affects \(\langle \gamma \gamma \rangle : \text{^{(3)}R}_{\mu \nu}^2 \)

Due to the coupling with \(\phi \)!

Corresponding \(\langle \zeta \gamma \gamma \rangle \) can be sizable!