Modulated Natural Inflation in the CMB

Martin W. Winkler

in collaboration with R. Kappl, H.P. Nilles, M. Zatta

Advances in Theoretical Cosmology in Light of Data
July 21, 2017
Natural Inflation

- global $U(1)$ symmetry
 \[\Phi = f e^{i\varphi/f} \]

- inflaton = goldstone boson (axion)

- shift symmetry broken via $\varphi F\tilde{F}$

\[V = \Lambda^4 \left(1 - \cos \left[\frac{\varphi}{f} \right] \right) \quad f = \text{axion decay constant} \]

- string axions inherit shift symmetries from gauge symmetries

- breaking via gaugino condensation or string instantons, e.g. KKLT
Natural Inflation and the CMB

- Tension with CMB data
- $f > M_P$ does not arise in controllable regime of string theory

Banks, Dine, Fox, Gorbatov, JCAP 0306 (2003), Svrcek, Witten, JHEP 0606 (2006)
Natural Inflation and the CMB

- **tension with CMB data**
- **$f > M_P$ does not arise in controllable regime of string theory**

Banks, Dine, Fox, Gorbatov, JCAP 0306 (2003), Svrcek, Witten, JHEP 0606 (2006)
Two-axion model

\[V = \Lambda_1^4 \left[1 - \cos \left(\frac{\varphi_1}{f_1} + \frac{\varphi_2}{f_2} \right) \right] \]

\[+ \Lambda_2^4 \left[1 - \cos \left(\frac{\varphi_1}{g_1} + \frac{\varphi_2}{g_2} \right) \right] \]

Integrate out

\[V \sim \Lambda^4 \left(1 - \cos \frac{\varphi}{f} \right) \]

\[f \propto \frac{1}{\frac{f_1 g_2}{g_1 f_2} - \frac{g_1}{g_2}} > 1 \]
Axion Alignment Mechanism with Higher Harmonics

- **two-axion model**

 \[V = \Lambda_1^4 \left[1 - \cos \left(\frac{\varphi_1}{f_1} + \frac{\varphi_2}{f_2} \right) \right] \times \mathcal{F}_1 + \Lambda_2^4 \left[1 - \cos \left(\frac{\varphi_1}{g_1} + \frac{\varphi_2}{g_2} \right) \right] \times \mathcal{F}_2 \]

 \[\eta(T) = e^{-\pi T/12} - e^{-25\pi T/12} + \ldots \]

- **misalignment**

 \[\frac{f_1}{f_2} \neq \frac{g_1}{g_2} \]

- **alignment**

 \[\frac{f_1}{f_2} \approx \frac{g_1}{g_2} \]

- **integrate out**

 \[V \sim \Lambda^4 \left(1 - \cos \frac{\varphi}{f} \right) \times \left(1 - \delta \cos \frac{\varphi}{f_{\text{mod}}} \right) \]

 \[f \propto \frac{1}{f_1 g_2 - g_1 f_2} > 1 \]
Modulations

V, V', V''

- slow roll parameters
- CMB observables
 \[r \approx 16\epsilon \]
 \[n_s \approx 1 - 4\epsilon + 2\eta \]

Modulations mainly affect n_s

other inflation models with higher harmonics: Abe, Kobayashi, Otsuka, JHEP 04 (2015), Higaki, Takahashi, JHEP 03 (2015)
\[V = \Lambda^4 \left(1 - \cos \frac{\varphi}{f} \right) \times \left(1 - \delta \cos \frac{\varphi}{f_{\text{mod}}} \right) \]

\[f_{\text{mod}} = 0.1 M_P \]
$$\delta = 10^{-5}$$

$$V = \Lambda^4 \left(1 - \cos \frac{\varphi}{f} \right) \times \left(1 - \delta \cos \frac{\varphi}{f_{\text{mod}}} \right) \quad \text{f}_{\text{mod}} = 0.1 \, \text{M}_\text{P}$$
$\delta = 10^{-4}$

\[V = \Lambda^4 \left(1 - \cos \frac{\varphi}{f}\right) \times \left(1 - \delta \cos \frac{\varphi}{f_{\text{mod}}}\right) \quad f_{\text{mod}} = 0.1 \, M_P \]
\[V = \Lambda^4 \left(1 - \cos \frac{\varphi}{f} \right) \times \left(1 - \delta \cos \frac{\varphi}{f_{\text{mod}}} \right) \]

\[f_{\text{mod}} = 0.1 \, M_{\text{P}} \]
in string/supergravity model modulations grow with increasing f

modulations induce running of the spectral index

observable tensor modes predicted $r \sim 0.001 - 0.05$
Running of the Spectral Index

- in string/supergravity model modulations grow with increasing f

- modulations induce running of the spectral index

- observable tensor modes predicted $r \sim 0.001 - 0.05$
Primordial Scalar Power Spectrum

small scale suppression hardly visible in CMB power spectrum

- suppressed μ-distortion in CMB

impact on H_0, m_ν, ...?
in string realization of natural inflation higher harmonics cause modulations on the potential

this leads to a primordial power spectrum which is observationally distinguishable from ΛCDM
Backup Slides
Model

- instanton-induced coupling between matter fields ψ_i
 $$W = \psi_1 \psi_2 \psi_3 \cdot \eta^n(T) + \psi_1 \psi_4 \psi_5 \quad (\psi_{2\ldots4} \text{ get vev})$$

 T: Kähler modulus,
 $$\eta(T) = e^{-\pi T/12}(1 - e^{-2\pi T} + \ldots)$$

- resulting potential for $T = T_0 + \chi + i\varphi$
 $$V \simeq \Lambda^4 \frac{e^{-\chi/f}}{T_0 + \chi} \left(\cosh \left[\frac{\chi}{f} \right] - \cos \left[\frac{\varphi}{f} \right] \right)$$
 $$f = \frac{6\sqrt{2}}{n\pi T_0}$$
The Weak Gravity Conjecture

- U(1) gauge symmetry requires particle with \(q/m > 1 \)

- two U(1)s: convex hull of vectors \(\left(\frac{q_1}{m}, \frac{q_2}{m} \right) \) must contain unit ball

- axion related to U(1) via chain of dualities \(q \rightarrow f^{-1}, \ m \rightarrow S \)

- alignment mechanism seems to violate convex hull condition
\begin{itemize}
 \item \textbf{U(1) gauge symmetry requires particle with }$q/m > 1$

 \item two U(1)s: convex hull of vectors $\left(\frac{q_1}{m}, \frac{q_2}{m}\right)$ must contain unit ball

 \item axion related to U(1) via chain of dualities $q \rightarrow f^{-1}, \ m \rightarrow S$

 \item alignment mechanism seems to violate convex hull condition

 \item resolved by subleading instantons

 \[\eta(T) = e^{-\pi T/12}(1 - e^{-2\pi T} + \ldots) \]
\end{itemize}