Constraining fundamental physics and halo energetics using Sunyaev-Zel'dovich measurements

Nick Battaglia
Princeton University

MacNamara et al. 2009
Collaborators

Emmanuel Schaan (Princeton)
Colin Hill (Columbia)
Simone Ferraro (Berkeley)
Jia Liu (Princeton)
Dick Bond (CITA)
Christoph Pfrommer (Postdam)
Jon Sievers (UKZN)
David Spergel (Princeton)
Baryons
Baryons

van Daalen et al 2011
- Pushing into the non-linear regime leads to increasing the uncertainties from baryons and potential biases in the inference of cosmological parameters.

- Or provides unique constraints on the main baryonic processes that govern the growth of structure on these scales (galaxy formation).
Lensing is Low: Cosmology, Galaxy Formation, or New Physics?

Alexie Leauthaud1,2, Shun Saito3, Stefan Hilbert4,5, Alexandre Barreira3, Surhud More2, Martin White6, Shadab Alam7,8, Peter Behroozi6,9, Kevin Bundy1,2, Jean Coupon10,
Cosmological Simulations

The Eagle Simulations

Evolution and Assembly of Galaxies and their Environments

Illustris Collaboration

Ellipticals

Disk Galaxies

Irregular
Are the sub-grid physics models realistic?

What is the work being done on these systems?

Predictions for the energetics of (massive) halos

Impact on cosmological information?
CMB scattering sources (secondaries):SZ effect
Kinetic Sunyaev-Zel’dovich Effect
Doppler boosting of CMB photons

LOS Momentum

Credit: L. Van Speybroeck

Carlstrom et al 2002
Gallery of recent kSZ results

- Hand et al. 2012
- Planck 2016
- Schaan et al. 2015
- Soergel et al. 2016
- De Bernardis et al. 2016
What is measured?

\[\left(\frac{\Delta T}{T} \right)_{kSZ} (x + \theta) = -\tau(\theta) \nu_r(x) \]

- Optical depth (profile)
- 'Bulk' radial velocity
- Vary \(r \) at fixed \(\theta \) \(\rightarrow \) velocity field on large scales
- Vary \(\theta \) at fixed \(x \) \(\rightarrow \) gas profile and abundance.

TWO different measurements!
We also have measurements of the pressure!
Gallery of recent tSZ results

- **Greco et al. 2015**
- **Planck Coll. Intermediate V 2013**
- **Battaglia, Hill, & Murray 2015**
- **Hojjati et al. 2015**
Combining tSZ & kSZ measurements

Previously, Knox+2004 Sehgal+2005 proposed to constrain T, τ & v_{pec}

Constraint dominant physical processes in galaxy formation
Ostriker, Bode & Babul 2005
Model for the ICM with a couple parameters
\(\gamma \) - polytropic index
\(\alpha \) - normalization of \(P_{NT} \)
\(\epsilon_{inj} \) - Eff. of energy injected

Assumptions
\[P = K \rho^\gamma \]

Spherical Symmetry
Hydrostatic Equilibrium (\(P_{\text{tot}} \))

Conditions
\[E_f = E_i + E_{inj} + \Delta E_P \]
\[P_{\text{tot}} (R_f) = P_s (R_{\text{vir}}) \]

Conservation of mass

Solve for \(P_{\text{th}}(r) \) and \(\rho(r) \)
Spherical Symmetry & Polytropic Index

How do these assumptions look in simulations?

After stacking ✔

\(\gamma \) fairly constant \(\sim 2 \, R_{200} \) ✔

Battaglia et al. 2012a

Battaglia et al. 2012b
Given \(P_{\text{th}}(r) \) and \(\rho(r) \) from these measurements, can we constrain \(\gamma, \alpha \), and \(\epsilon_{\text{inj}} \)?
The improvement seen here is coming from:
Higher resolution, lower noise, and a larger sample
Combining tSZ & kSZ measurements forecast

Battaglia et al. 2017
Combining tSZ & kSZ measurements forecast

Battaglia et al. 2017
Combining tSZ & kSZ measurements forecast

DESI LRGS extremely high fidelity measurements
Can further sub-sample into other galaxy properties
Combining tSZ & kSZ measurements forecast

Can ask the same questions with Quasars
Beware of fisher forecasts

What are some of the systematics?

galaxy - gas offset

2-halo term

What is the distribution of masses in the sample?

Markevitch et al 2006

Hill et al 2017
Cosmological Implications

LSST $L_{\text{max}} = 5000$ at $z = 0.3, 0.5, 1.0$

“cumulative density profile”

NFW (dark matter only)

GAS

BOSS CMASS galaxies + ACTPol CMB data
$z \sim 0.6, M \sim 2 \times 10^{13} M_{\odot}$

Schaan, Ferraro, ++ (ACTPol) 2015
Cosmological impact of feedback

Alternatively:
Use small scale information to constrain feedback
Foreman+2016
kSZ with LSST - projected fields approach

Hill, Ferraro, Battaglia et al. 2016
kSZ with LSST - projected fields approach

\[\text{S/N} \sim 3.8-4.5 \]

- Case A
- Fiducial

\[\langle \text{planck}^2 \times \text{WISE} \rangle \]

Future experiments

\[r(\ell) = \frac{C_{\ell}^{\text{kSZ}}}{(C_{\ell}^{\text{kSZ}} + C_{\ell}^{TT})^{1/2}} \]

\[\ell \]

\begin{tabular}{|l|c|c|}
\hline
CMB experiment & beam FWHM & effective noise \[\Delta_T \text{[\mu K-arcmin]}\] \\
\hline
Planck (2015 LGMCA map) & 5 & 47 \\
Advanced ACTPol & 1.4 & 10 \\
CMB-S4 (case 1) & 3 & 3 \\
CMB-S4 (case 2) & 1 & 3 \\
CMB-S4 (case 3) & 3 & 1 \\
CMB-S4 (case 4) & 1 & 1 \\
\hline
\end{tabular}

\begin{itemize}
\item \textbf{LSST} 26 gal/arcmin\(^2\) (preliminary)
\item \textbf{x AdvACT} 326
\item \textbf{x CMB-S4 (case 1)} 402
\item \textbf{x CMB-S4 (case 2)} 1032
\item \textbf{x CMB-S4 (case 3)} 1006
\item \textbf{x CMB-S4 (case 4)} 1230
\end{itemize}

\textbf{BUT CAREFUL with SYSTEMATICS (foregrounds!)}

Hill, Ferraro, Battaglia et al. 2016
Ferraro, Hill, Battaglia et al. 2016

Slide credit S. Ferraro
AdvACT + LSST

Funded, large area, multiple frequency bands
Potential for kSZ cross correlations is large
Further ahead there will be Simons Obs. & CMB S4
The Simons Observatory

http://simonsobservatory.org

• A five year, $45M+ program to pursue key Cosmic Microwave Background science targets, and advance technology and infrastructure in preparation for CMB-S4.

• Merger of the ACT and POLARBEAR/Simons Array teams.

• Tentative plans include:
 • Major site infrastructure
 • Technology development (detectors, optics, cameras)
 • Demonstration of new high throughput telescopes.
 • CMB-S4 class receivers with partially filled focal planes.
 • Data analysis

http://simonsobservatory.org
Baryons

Summary and Outlook

SZ cross-correlations are going to be a new window into thermodynamic process within halos.

High S/N kSZ on coming soon

Learn about the physical processes. Constrain sub-grid energetics models.

Push future cosmological probes into non-linear regime.

Thank You!
Extras
What is measured?

\[
\left(\frac{\Delta T}{T} \right)_{kSZ} (x + \theta) = -\tau(\theta) \, v_r(x) \quad (+\text{2-halo})
\]

- Vary r at fixed θ → velocity field on large scales
- Vary θ at fixed x → gas profile and abundance.

Two different measurements!
Velocity field on large-scales

\[v \approx f_g \left(\frac{aH}{k^2} \right) \delta \]

\[f_g = \frac{d \ln \delta}{d \ln a} \approx \left[\Omega_m(z) \right]^\gamma \]

\[f_g(z, k) \approx \mu(k) \Omega_m^\gamma(z) \]

\[\gamma = 0.55 + 0.05(1 + w) \]
Pair-wise velocity statistic & measurements

\[\langle \frac{\Delta T}{T}(x) \nu_r^{\text{rec}}(y) \rangle = -\bar{\tau} \langle \nu_r^{\text{true}}(x) \nu_r^{\text{rec}}(y) \rangle \]

Also see Planck Coll. 2016 & SPT Soergel et al. 2016
Motivation - kSZ cosmology forecasts

Pair-wise velocity estimator

Huge potential to constrain fundamental physical parameters and extensions to the concordance cosmological model
For a halo of a given mass, what is the optical depth?
Uncertainties on τ will soon be a leading systematic uncertainty in the cosmological parameters obtained from kSZ measurements.

How does one measure τ since it is not a “direct” observable?
Not surprisingly there is a relation between $\tau - y$
At fixed gas mass temperature fluctuations are small found in simulations but this appears to independent of SG-model at the $< 10\%$ level