Generating Cosmological Magnetic Fields

Jean-Baptiste Durrive

Nagoya University, Japan

Durrive & Aubert, 2017, in prep

Workshop ‘Advances in Theoretical Cosmology in the Light of Data’
Nordita, July 2017, Stockholm
• Magnetic fields **everywhere**: from stars to galaxies to cosmic voids

![Diagram showing magnetic field scales](image)

Generally:

- Small scale
- Large scale
- Strong field
- Weak field

• **Cosmological** Magnetic fields:

 Observational upper bounds:
 - CMB: $B < 5 \text{ nG (comoving)}$ at 1 Mpc *(Planck results 2015: XIX)*
 - Constraints from structure formation $B < nG$ at protogalactic scales *(Wasserman 1978, Kim et al 1996)*

 Observational lower bounds:
 - High energy gamma rays (Fermi and HESS): $B > 10^{-16}$ or 10^{-18} G (?) in a significant fraction of the IGM *(Neronov&Vovk 2010, Taylor et al 2011, Takahashi et al 2011, ...)*

Origin(s)?

• Current paradigm:
 1) Generate **weak seeds**
 2) **Amplified**: compression during structure formation (flux freezing) + dynamos

• Turbulence in structures → B fields lost their initial properties → look at the **Intergalactic medium** where seeds did not evolve too much
• Current status of amplification process studies:

\[\rightarrow \text{we need } \sim 10^{-22} \text{ to } 10^{-12} \text{ G seeds} \]

• Numerous mechanisms:
(Reviews see e.g. Ryu et al 2012, Widrow et al 2012, Durrer & Neronov 2013, ...)

I) Primordial Universe mechanisms

• **Inflation:** quantum fluctuations of electromagnetic field, but need non-standard electromagnetism
• **Phase transitions:** electroweak and quark-hadron
• **Recombination:** rotating plasma blobs interacting with background radiation

II) Post recombination mechanisms

• **Thermal (Biermann) battery:** in stars, from cosmological shocks during cosmic web formation, from propagating ionization fronts at EoR in large structures
• **Plasma instabilities:** many, but e.g. Weibel instability
• **Radiation:** Thomson scattering In protogalaxies, **Photoionization** at EoR in the IGM or around first stars
• **Outflows:** Galactic winds from galaxies in clusters, from void galaxies, AGN outflows
• Current status of amplification process studies:

\[
\rightarrow \text{we need } 10^{-22} \text{ to } 10^{-12} \text{ G seeds}
\]

• Numerous mechanisms:
 (Reviews see e.g. Ryu et al 2012, Widrow et al 2012, Durrer & Neronov 2013, ...)

 I) Primordial Universe mechanisms

• **Inflation**: quantum fluctuations of electromagnetic field, but need non-standard electromagnetism

• **Phase transitions**: electroweak and quark-hadron

• **Recombination**: rotating plasma blobs interacting with background radiation

II) Post recombination mechanisms

• **Thermal (Biermann) battery**: in stars, from cosmological shocks during cosmic web formation, from propagating ionization fronts at EoR in large structures

• **Plasma instabilities**: many, but e.g. Weibel instability

• **Radiation**: Thomson scattering In protogalaxies, **Photoionization** at EoR in the IGM or around first stars

• **Outflows**: Galactic winds from galaxies in clusters, from void galaxies, AGN outflows

No preferred mechanism so far. Fields not strong enough on intergalactic scales
Astrophysical mechanism generating intergalactic magnetic fields at the Epoch of Reionization

Neutral → Ionized

Recombination
(380,000 years)

Epoch of Reionization
(1 billion years)

Today
(14 billion years)

Strömgren sphere
Intergalactic medium (Hydrogen)

Strömgren sphere (HII region)

Source
\[\lambda_{mfp} \propto \nu^3 \]

Intergalactic medium (Hydrogen)

Strömgren sphere (HII region)

Source
\[\lambda_{mfp} \propto \nu^3 \]

Charge separation by photoionization

Intergalactic medium (Hydrogen)

Strömgren sphere (HII region)

Source
Charge separation by photoionization

Intergalactic medium (Hydrogen)

Strömgren sphere (HII region)

Source
Intergalactic medium (Hydrogen)

Strömgren sphere (HII region)

Source
\(\nabla \times \vec{E} = 0 \)

Intergalactic medium (Hydrogen)

Strömgren sphere (HII region)

Source
Maxwell-Faraday equation: \[\partial_t \vec{B} = -c \vec{\nabla} \times \vec{E} \]

→ Need **rotational \(E \) field** to generate \(B \)

Inhomogeneities of Intergalactic medium enable this

(Langer et al 2005)
\[\nabla \times \vec{E} \neq 0 \]

Intergalactic medium (Hydrogen)

Strömgren sphere (HII region)

Source
Intergalactic medium (Hydrogen)

Strömgren sphere (HII region)

Source
Intergalactic medium (Hydrogen)

Anisotropic HII region

Source
\[\nabla \times \vec{E} \neq \vec{0} \]

Intergalactic medium (Hydrogen)

Anisotropic HII region

Source
Formally

(Burrive & Langer, 2015, MNRAS)

Photoionization = local modification of the number of electrons and of their **velocity distribution**

⇒ Kinetic theory!
Source term in Boltzmann equation of electron distribution function:

\[
\frac{df}{dt} = \partial_t f \big|_{\text{photoionization}}
\]

Momentum transferred from photons to electrons:

\[
m_e \ddot{v} = f_{mt}(\nu) \frac{h\nu}{c} \hat{r}
\]

Fraction of momentum transferred

Induction equation:

\[
\partial_t \vec{B} = -\frac{c}{e} \frac{\vec{\nabla} n_e \times \vec{\nabla} p_e}{n_e^2} - \frac{c}{e} \vec{\nabla} \times \left[\frac{\vec{p}_e}{n_e} \right]
\]

Photoionization:
Radiation induces magnetic fields!

Momentum transfer rate

Biermann
Resulting magnetic field

(Durrive & Langer, 2015, MNRAS)

Source of B:
Anisotropy of the column density

$$\vec{B}(t, \vec{r}) = \frac{N}{e x_e} \nabla \int_{r_s}^{r} n_{HI} dr \times \hat{r}$$

where

$$N = \frac{1}{4\pi r^2} \int_{\nu_0}^{\infty} f_{mt} \sigma^2_{\nu} L_{\nu} e^{-\tau_{\nu}} d\nu$$

Absorption along photon path

Cross section

Geometric dilution

Source spectrum

Ionizing photons

Fraction of momentum transferred
Resulting magnetic field

(Durrive & Langer, 2015, MNRAS)

Source of B:
Anisotropy of the column density

Inhomogeneity

$$\vec{B}(t, \vec{r}) = t \frac{N}{e x_e} \nabla \int_{r_s}^r n_{HI} \, dr \times \hat{r}$$

Numerical Approach:
collaboration with D. Aubert

Inhomogeneity

Strömgren radius

Cross section

Absorption along photon path

Geometric dilution

Ionizing photons

Source spectrum

Fraction of momentum transferred

where

$$N = \frac{1}{4\pi r^2} \int_{\nu_0}^{\infty} f_{mt} \sigma_\nu^2 L_\nu e^{-T_\nu} \, d\nu$$
Typical spatial distributions and scales

(Durrive & Langer, 2015, MNRAS)

- Gaussian inhomogeneities → analytical expressions
- Explicit lengthscales & magnetized regions
- Studied properties for various sources at various epochs:

Compared with intersource distances:

- Magnetization of the whole intergalactic medium

Pop III clusters
- Strömgren sphere
- 2 kpc inhomogeneity

First galaxies
- 20 kpc
- -19

Quasars
- 2 Mpc
- -21
- -23

Best compromise power/dilution

- Compared with intersource distances:
 - magnetization of the whole intergalactic medium
Global magnetization level of the Universe

Case of galaxies:

Distribution of sources & clouds:
Given by underlying **Dark Matter halos**
(Press-Schechter formalism)

Mean magnetic field in the Universe:

Universe with *strongly ionizing* galaxies
(maximal escape fraction & stars formed to stay consistent with Planck)

Universe with *weakly ionizing* galaxies
(minimal escape fraction & stars formed to stay consistent with Planck)
Numerical approach

(Durrive & Aubert, 2017, in prep)

Generated B field with realistic profiles from cosmological simulations:

(example of a primordial galaxy at $z = 10$)

Ongoing work!
Evolution in the cosmic web?

B field generated early

→ Need to study the evolution of cosmological magnetic fields
Cosmological evolution of B in the cosmic web?

- Within intergalactic filaments

Vazza et al. 2014

Cosmic web at $z = 0$
Cosmological evolution of B in the cosmic web?

- Within intergalactic filaments

Vazza et al. 2014

Detectability & measurements?
Square Kilometre Array

- Galaxy evolution, cosmology and dark energy
- Strong-field test of gravity using pulsars and black holes
- The origin and evolution of cosmic magnetism
- Probing the Cosmic Dawn
- The cradle of life
- Exploration of the unknown
Square Kilometre Array

Phase 1 : construction 2018 – 2023
→ SKA1 : 10 % total surface, sc. op. 2020

Phase 2 : design 2018 – 2023, construction 2023 – 2030
→ SKA2

SKA1 mid
• Array on ~150 km in diameter
• 350 MHz – 14 GHz
• 197 dishes: 15 m & 13.5 m (64 MeerKAT)
• Pulsars, 21cm local univ., **galactic B & IGM**,…

SKA1 low
• Array on ~ 40 km in diameter
• 50 MHz – 350 MHz
• 131 000 double-polarization (+ ASKAP)
• Reionization, **galactic B & IGM**, exoplanets,…
Conclusion and discussion

- Astrophysical mechanism, operating for any source, **all along the EoR**
- Strengths comparable to Biermann battery, but on entire inter-source scales
 - ⇒ Contributes to **magnetization of the whole Intergalactic medium**
 interesting for voids!

- Specific spatial configuration:
 - may help discriminate the seeds from other mechanisms

- Directly measurable seeds ?
 - → 10^{-19} G fields prior and during EoR !
 (Venumadhav et al 2017, Gluscevic et al 2017)
Thank you for your attention