Sorting galaxy histories

JD Cohn, UC Berkeley
Have a wealth of galaxy data

- stellar mass functions, many z
- luminosity functions, many z
- colors/sizes/shapes
- spectra
- clustering (mostly low z)
- gas measurements (CGM, etc)
- etc...

And much more is coming!!

From these-what sorts of things can we learn about how galaxies form?
Understanding galaxy formation

• galaxy formation = how galaxy properties evolve
• large number of physical processes/scales
• very complex
Understanding galaxy formation

• galaxy formation= how galaxy properties evolve
• large number of physical processes/scales
• very complex

Approaches:
Could try to simulate every measurement in detail
try to match all the observations in detail
Understanding galaxy formation

- galaxy formation = how galaxy properties evolve
- large number of physical processes/scales
- very complex

Approaches:
Could try to simulate every measurement in detail
try to match all the observations in detail
Many efforts in this direction right now
(see Nick B’s slide!)
Understanding galaxy formation

• galaxy formation = how galaxy properties evolve
• large number of physical processes/scales
• very complex

Here--go minimal

observationally and in detailed simulations, emergent statistical trends are seen

• perhaps from “self-regulation”
• properties/physics conspire to give simple relations
 e.g. $\Delta M^* \sim f(M_h,z) \Delta M_h$
look for simple descriptions of galaxy evolution
predict a few basic statistical properties over time, for a sample (e.g. M^*, SFR)
Why would one characterize galaxy histories in simple ways?

- *identifying* emergent causes/effects
 - and comparing to theories for emergent causes/effects
- intercompare properties
 - e.g. halo mass to SFR history
- to relate galaxy properties to lss
 - for understanding
 - to make mock catalogues
look for simple descriptions of galaxy evolution
predict a few basic statistical properties over time, for a sample (e.g. M*, SFR)
• any successes suggest essential parts captured/summarized
• any failures point to additional required physics

Context—simulations
– Give whole (theoretical) history in detail
– case here: use dark matter halo histories
 • using as little as possible from these as well
 • Here Millennium simulation + L-galaxies model
 • (Springel++05, Lemson++06, Henriques++15)
 • tuned to observations mentioned earlier
look for simple descriptions of galaxy evolution
predict a few basic statistical properties over time, for a sample (e.g. M*, SFR)
look for simple descriptions of galaxy evolution predict a few basic statistical properties over time, for a sample (e.g. M*, SFR)

Which properties??

Can be too simple:

“Galaxies start out small, form stars, then merge with other galaxies and/or stop forming stars. The End.” 😊
look for simple descriptions of galaxy evolution
predict a few basic statistical properties over time, for a sample (e.g. M*, SFR)

(statistical properties over time: look at ensembles of galaxy histories)
look for simple descriptions of galaxy evolution
predict a few basic statistical properties over time, for a sample (e.g. M*, SFR)

Which properties??
Previously: *Simple histories for M* ~
-- for each galaxy, write M*(t) as average plus ~3 fluctuations (PCA)
--coefficients a0,a1,a2 capture *most* of scatter
(fixed M* final, hydro and SAM examples, van de Voort &JDC)
Try PCA for SFR histories?

- PCA did not work well at all!
 - Needed *many* fluctuations to describe 90% scatter for histories (~might as well give terms for whole history)
 - see also Shamshiri++15
Try PCA for SFR histories?

• PCA did not work well at all!
 – Needed *many* fluctuations to describe 90% scatter for histories (might as well give terms for whole history)
 – see also Shamshiri++15

• New piece: Diemer++ ('17):
 – fit to *integral* of SFR
 • this is *choice* of what to focus on
 • small changes in sfr for high M^* halo not as important

(Context: use lognormal fits to SFR, following Gladders++)

\[
SFR = \frac{A}{\sqrt{2\pi t \tau}} \exp\left(-\ln(t)-T_o\right)^2 /2\tau^2 \\
3 \text{ parameters } A,T_o,\tau)
\]
Beyond “integrated SFR goes up and then flat at some point....” 😊
Beyond “integrated SFR goes up and then flat at some point....” 😊
SFR Histories

Do PCA on *integral* of all SFR histories in sample

(**Rescale all histories to have same integrated SFR at final time**)

Find: most of scatter in first 3 fluctuations (good!)
But: scatter is *large*!
i.e., for integrated SFR

\[a_0, a_1, a_2 \text{ give } > 95\% \text{ of scatter} \]

but scatters are big!
Split apart sample

• For stellar mass histories, used galaxies of similar final M^*, not whole sample
• hint from Pacifici++16
 – stacked SFR histories of quenched galaxies of same M^*_{final}
 – dominated by galaxies which quenched most recently
• Try:
 – stack by sfr peak (from Diemer++17 fit)
 – highly correlated with PC_0 coefficient
• This works much better!
 – again scatter dominated by leading few fluctuations
 – and total fluctuations around average history much smaller
i.e., for integrated SFR, fixed t_{peak} in range, $n \pm 0.5$, $n = 1, 2, \ldots$;

a_0, a_1, a_2 give $\sim 90\%$ of scatter in subsample scatters relatively “small”
SFR histories

Many caveats/fine print

– random samples
 • sum of 20 equal log mass bins (M_h or M^*)

– no starbursts in Millennium SAM outputs, so some histories missing SFR contributions 😞, also some SFR goes to ICL

– overall rescalings are used when doing stacking

• SFR histories can be different things to different people
 – *Which* SFR histories?
Which SFR histories?

DM halo histories

Each dot is a halo
all dots = full history

M. White
Which SFR histories?

DM halo histories
Each dot is a halo
all dots=full history

--- main history

M. White
Which SFR histories?

DM halo histories
Each dot is a halo
all dots=history

— main history

Spectra of final galaxy
-full history (minus icl)
Following one galaxy
—main history
show main for next few exs

*main SFR often peaks slightly later than full, +/-1

M. White
Average main histories for different t_{peak}, 2 samples, plus fraction of scatter from first 3 perturbations*

*norm by each gal’s int of sfr
average instantaneous **main** histories
different samples and fits ↔ ↔ different widths
PCA results, stacked on t_{peak} as shown average + first 3 perturbations (x median coefficient)

Scatter is not Gaussian!

![Graph showing PCA results](image)

- 1 Gyr: 655 gals
- 3 Gyr: 6757 gals
- 5 Gyr: 2971 gals
- 7 Gyr: 1543 gals
- 9 Gyr: 765 gals
- 11 Gyr: 315 gals
- 13 Gyr: 164 gals
- 15 Gyr: 688 gals
- 17 Gyr: 422 gals
Scatter around averages

• small
• controlled by a few major perturbations
 – 90% or more in those
 – maybe can treat rest as random scatter??
 • this would be nice for creating mock catalogues 😊
Can look at each stack in detail

which galaxies are sharing same t_{peak}?

• following Diemer++ analysis for Illustris
 (Note: Bluck++16--quenching relative to SDSS
 Illustris not enough, MS too much)

• consider stacks and
 – average SFR history (main & full),
 – integrated SFR history (main & full),
 – M^* and M_h distributions
Example, peak at t=9 Gyrs

Figure Description:

- The top-left quadrant of the figure shows a graph with the x-axis labeled as t_{peak} and a peak at $t=9$ Gyrs. The y-axis represents the normalized star formation rate (sfr) with a peak at 765 gals.

- The top-right quadrant displays a graph with the x-axis labeled as time (t) and the y-axis as the mass in units of M_\odot. The graph includes curves for different parameters, with one indicating the time at which the peak occurs.

- The bottom-left quadrant is a histogram plotted on the x-axis $M_h[M_\odot]$ and the y-axis as the number of galaxies. The histogram peaks at M_h.

- The bottom-right quadrant is another histogram, this time on the x-axis $M^*[M_\odot]$ and the y-axis as the number of galaxies. The histogram peaks at M^*.
Example, peak at t=3 Gyrs

M^* and M halo larger

main and full very different

Example:

$\text{peak at } t=3$ Gyrs

$t_{\text{peak}} 3.0, 6757 \text{ gals}$

0.95 0.39 t

pc 1

pc 2

pc 0

m_{h}

m_{halo}

larger

m^* and "M^* final"
Tie these SFR histories to halo histories?

• First pass--throw into machine learning
• Follow Kamdar, Turk, Brunner
 – they got many galaxy properties just using dm histories or fixed time detailed dm properties
 – used only central galaxies, but all central galaxies (so low mass dominated)
 – got really cool results (and codes are on github)!
Correlations between true/found for main SFR’s
Correlations between true/found for full SFR’s
PC$ _{0}$ was for stacking all galaxies--much worse for recovering PC$ _{0}$ for separate t_{peak} stacks!

This is largest fluctuation for fixed t_{peak} stacks--seems to be related to width of lognormal fit?--width not as closely tied to halo histories in first pass
summary

Look for simple parameterizations of galaxy formation histories
 – use to discuss/analyze trends (causes/effects)

Follow Diemer++17 and use *integrated* SFR histories

Find:
 Scatter around average int sfr history dominated by ~3 fluctuations
 Grouping galaxies by t_{peak} from Diemer++17 lognormal fit
 – lowers total scatter, ~3 fluctuations still give 90% of scatter*
 – seems to give nice simplification of histories

*(did rescale all to same $z=0$ integrated sfr)

• machine learning can get some parameters well from halo histories

Need to investigate more:
 – picked equal logM*, logM$_h$ samples, experiment with uses
 – lognormal t_{peak} not 100% correl with fluncts around full average \Rightarrow is another parameterized fit better?
 – relations of Diemer++17 or relations to M* PCA from this angle
thank you