Primordial Black Holes as Dark Matter

Florian Kühnel

Talk at
‘Advances in Theoretical Cosmology in light of Data’
Stockholm, the 25th of July, 2017

work in particular with
Bernard Carr
Tommy Ohlsson
Katherine Freese
Marit Sandstad
Glenn Starkman
Primordial Black Holes — Formation

★ Black-hole (BH) formation for $R < R_S$

★ Astrophysical: From $10^9 M_\odot$ down to M_\odot but not lower.

★ Have a look at the density

$$\rho_S = 10^{18} \left(\frac{M}{M_\odot} \right)^{-2} \frac{g}{\text{cm}^3}$$

→ To form smaller black holes we need higher density

→ Compare to cosmological density

$$\rho_C = 10^6 \left(\frac{t}{\text{s}} \right)^{-2} \frac{g}{\text{cm}^3}$$

→ Formation at early times; primordial black holes (PBHs)

★ Masses of primordial black holes:

$$M(t = 10^{-45} \text{ s}) = M_{\text{Planck}},$$

$$M(t = 10^{-23} \text{ s}) = 10^{15} \text{ g}, \quad M(t = 10^{-6} \text{ s}) = M_\odot$$
Formation of primordial black holes by

- Cosmic string loops
- Bubble collisions
- Large density perturbations of inflationary origin

Simple estimate:

\[R > R_J \quad \Rightarrow \quad \delta_H > \omega \quad , \quad \text{for} \quad \rho = \omega \rho \]
probe a huge range of scales:

- \(M \sim 10^{-5}\text{g} \) Quantum Gravity:
 Planck relics, Extra dimensions and higher-dimensional black holes, ...

- \(M \lesssim 10^{15}\text{g} \) Early Universe:
 Baryogenesis, Nucleosynthesis, Reionisation, ...

- \(M \sim 10^{15}\text{g} \) High-Energy Physics:
 Cosmological and galactic gamma-rays, ...

- \(M \gtrsim 10^{15}\text{g} \) Gravity:
 Critical phenomena, Cold dark matter, Lensing effects, Gravitational waves, Black holes in galactic nuclei, ...
Critical Collapse

★ Usually: Assume

\[M_{BH} \propto M_H \]

horizon mass

★ Critical scaling:

[Choptuik '93]

\[M_{BH} = k M_H (\delta - \delta_c)^\gamma \]
density contrast

★ Radiation domination:

\[k \approx 3.3, \quad \delta_c \approx 0.45, \quad \gamma \approx 0.36 \]

[Miller et al. 2004]
How would this look for monochromatic mass function?

[Carr, FK, Sandstad 2016]
How would this look for monochromatic mass function?

It is simply impossible to get a monochromatic spectrum!

[Carr, FK, Sandstad 2016]
More Systematic Study

\[\frac{df}{dM} = N \exp \left[-\frac{(\log M - \log M_f)^2}{2 \sigma_f^2} \right] \]

[Green 2016]
We applied this to this constrain “curtain”:

![Graph showing extended mass spectra and constraints with labels for various mass categories like EG, F, WD, NS, ML, mLQ, PT, and K, along with logarithmic scales for mass (M/M⊙) and frequency (f). The graph is shaded to indicate regions of constraint, and references to FK, Freese 2017 are included.]
More Systematic Study — Results

Log$_{10} (f)$

Log$_{10}(M_f/M_\odot)$

[FK, Freese 2017]
It is crucial to re-derive the constraints for (the realistic(!) case) of extended mass functions!

$\log_{10}(f)$

$\log_{10}(M_f/M_\odot)$
Consider the simplest non-sphericity: An Ellipsoid
Non-Sphericity

\[
\delta_{ec} \approx 1 + \kappa \left(\frac{\sigma^2}{\delta_c^2} \right)^\gamma
\]

\[
\langle e \rangle = \frac{3 \sigma}{\sqrt{10\pi} \delta}, \quad \langle p \rangle = 0
\]

Simple estimate: As the collapse starts along shortest axis first, consider collapse of largest enclosed sphere (green curve):

\[
\frac{\delta_{ec}}{\delta_c} \approx (1 + 3e) = 1 + \frac{9}{\sqrt{10\pi}} \left(\frac{\sigma^2}{\delta_c^2} \right)^{1/2}
\]

[FK, Sandstad 2016]
★ Non-Sphericity

Non-Sphericity Effects

\[
\frac{\delta_{ec}}{\delta_{c}} \sim 1 + \kappa \left(\frac{\sigma^2}{\delta_c^2} \right)^\gamma
\]

Simple estimate: As the collapse starts along shortest axis first, consider collapse of largest enclosed sphere (green curve):

\[
\frac{\delta_{ec}}{\delta_c} \sim (1 + 3e) = 1 + \frac{9}{\sqrt{10\pi}} \left(\frac{\sigma^2}{\delta_c^2} \right)^{1/2}
\]

Even slight non-sphericity reduces the abundance of PBHs significantly!
If PBHs constitute a significant fraction of the dark matter, at the center of our Galaxy one would have a very large number of PBH inspiralling into SgrA*.

Stochastic enhancement; Detection forecasts for LISA:

[FK, Freese, Starkman, Matas 2017]
If PBHs constitute a significant fraction of the dark matter, at the center of our Galaxy one would have a very large number of PBH inspiralling into SgrA*.

Stochastic enhancement; Detection forecasts for LISA:

LISA will be a splendid PBH dark-matter detection machine!*
If PBHs constitute a significant fraction of the dark matter, at the center of our Galaxy one would have a very large number of PBH inspiralling into SgrA*.

Stochastic enhancement; Detection forecasts for LISA:

LISA will be a splendid PBH dark-matter detection machine!*

*If there is a substantial fraction of macroscopic dark matter.

[FK, Freese, Starkman, Matas 2017]
Uncertainty due to non-sphericities and critical collapse:

AKRAMI, FK, SANDSTAD 2017

[Akrami, FK, Sandstad 2017]
Uncertainty due to non-sphericities and critical collapse:

The primordial power spectrum is essentially not constraint from current constraints on the PBH abundance!

[Akrami, FK, Sandstad 2017]
Conclusion

★ Primordial black holes are very interesting!

★ They are unique probes of their formation scenarios.

★ They could provide the entire dark matter.

★ A detailed understanding their formation is crucial.

★ Extended mass spectra require special care when comparing to constraints.

★ LISA might detect them!

★ Also, combined dark-matter scenarios (PBHs + WIMPs or sterile neutrinos) might be well constraint in the near future.