Galileon Gravity in Light of CMB, BAO, ISW and H_0 data

Janina Renk

Oscar-Klein-Center, Stockholm University

arXiv: 1707.02263

with Miguel Zumalacárregui, Francesco Montanari & Alexandre Barreira
Why Modify Gravity?

Galileons and CMB, BAO, ISW & H0 data
Why Modify Gravity?

parameter constraints from weak gravitational lensing

Hildebrandt et. al (KiDS coll.) '16
Why Modify Gravity?

Local Determination of Hubble Constant

Beaton et al. '16 & Freedman '17
Galileon Cosmology vs. Data

- No $\Lambda \rightarrow \text{“Self-accelerating”}$
- CMB Temperature & Lensing Spectra
- BAO data
- ISW data
- H_0 from distance ladder
- Testable
Galileon Cosmology vs. Data

- No $\Lambda \rightarrow \text{“Self-accelerating”}$
- CMB Temperature & Lensing Spectra
- BAO data
- ISW data
- H_0 from distance ladder
- Testable
Galileon Cosmology vs. Data

- No $\Lambda \rightarrow “Self-accelerating””
- CMB Temperature & Lensing Spectra
- BAO data
- ISW data
- H_0 from distance ladder
- Testable
Galileon Cosmology vs. Data

- No $\Lambda \rightarrow$ “Self-accelerating”
- CMB Temperature & Lensing Spectra
- BAO data
- ISW data
- H_0 from distance ladder
- Testable

(~ 2 sigma tension)
Galileon Cosmology vs. Data

- No $\Lambda \rightarrow$ “Self-accelerating”
- CMB Temperature & Lensing Spectra
- BAO data (≈2 sigma tension)
- ISW data
- H_0 from distance ladder
- Testable
Galileon Cosmology vs. Data

- No $\Lambda \rightarrow \text{“Self-accelerating”}$
- CMB Temperature & Lensing Spectra
- BAO data
 - (~2 sigma tension)
- ISW data
- H_0 from distance ladder
 - (without any prior)
- Testable

27/07/2017

Galileons and CMB, BAO, ISW & H0 data
Galileon Cosmology vs. Data

- No $\Lambda \rightarrow$ "Self-accelerating"
- CMB Temperature & Lensing Spectra
- BAO data
- ISW data
- H_0 from distance ladder (without any prior)
- Testable

(~2 sigma tension)
Covariant Galileons

- Acceleration driven by kinetic interactions of scalar field
Covariant Galileons

- Acceleration driven by kinetic interactions of scalar field

<table>
<thead>
<tr>
<th>Model</th>
<th>extra d.o.f.</th>
<th>terms in \mathcal{L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic</td>
<td>0</td>
<td>$\propto X \Box \phi$</td>
</tr>
<tr>
<td>quartic</td>
<td>1</td>
<td>$\propto X^2 R$</td>
</tr>
</tbody>
</table>
| quintic | 2 | $\propto X^2 G_{\mu
u} \phi^{\mu\nu}$ |

$$X \equiv -\frac{(\partial \phi)^2}{2}$$
Covariant Galileons

(Local, 4D, Lorentz invariant, scalar-tensor theory with 2nd order EOM ⊂ Horndeski's Theory of Gravity)

- Acceleration driven by kinetic interactions of scalar field

<table>
<thead>
<tr>
<th>Model</th>
<th>extra d.o.f.</th>
<th>terms in \mathcal{L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic</td>
<td>0</td>
<td>$\propto X \Box \phi$</td>
</tr>
<tr>
<td>quartic</td>
<td>1</td>
<td>$\propto X^2 R$</td>
</tr>
<tr>
<td>quintic</td>
<td>2</td>
<td>$\propto X^2 G_{\mu\nu} \phi^\mu \phi^\nu$</td>
</tr>
</tbody>
</table>

\[X \equiv -\frac{(\partial \phi)^2}{2} \]
Covariant Galileons

(Local, 4D, Lorentz invariant, scalar-tensor theory with 2nd order EOM ⊂ Horndeski's Theory of Gravity)

- Acceleration driven by kinetic interactions of scalar field
- No ΛCDM limit → different cosmological parameters
Covariant Galileons

(Local, 4D, Lorentz invariant, scalar-tensor theory with 2nd order EOM \subset Horndeski's Theory of Gravity)

- Acceleration driven by kinetic interactions of scalar field
- No ΛCDM limit \rightarrow different cosmological parameters
- Predict value for H_0 consistent with local measurements
- Require non-zero Neutrino masses

Fit to CMB and BAO data

Results obtained with hi_class
(www.hiclass-code.net)
Covariant Galileons

(Local, 4D, Lorentz invariant, scalar-tensor theory with 2nd order EOM \subset Horndeski's Theory of Gravity)

- Acceleration driven by kinetic interactions of scalar field
- No ΛCDM limit \rightarrow different cosmological parameters
- Predict value for H_0 consistent with local measurements
- Require non-zero Neutrino masses

Results obtained with \texttt{hi_class} (www.hiclass-code.net)
Galileon Gravity vs. CMB
Galileon Gravity vs. CMB

$\ell (\ell + 1) / 2\pi C_{\ell}^T [\mu K^2]$

ℓ

C_{ℓ}^T

Test 2: CMB lensing at $\ell < 40$

→ Too much power on largest scales
Galileon Gravity vs. BAO

Galileons and CMB, BAO, ISW & H0 data
Galileon Gravity vs. BAO

~2σ tension with

- BOSS DR12 Galaxy

and

- BOSS DR11 Lyman alpha
Galileons and CMB, BAO, ISW & H_0 data

Galileon Parameter Space & ISW Effect

Fit to CMB and BAO data

\[\xi = \frac{\dot{\phi} H}{H_0^2} \]

<table>
<thead>
<tr>
<th>Model</th>
<th>extra d.o.f.</th>
<th>terms in \mathcal{L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic</td>
<td>0</td>
<td>$\propto X \Box \phi$</td>
</tr>
<tr>
<td>quartic</td>
<td>1</td>
<td>$\propto X^2 R$</td>
</tr>
<tr>
<td>quintic</td>
<td>2</td>
<td>$\propto X^2 G_{\mu\nu}\phi^{i\mu\nu}$</td>
</tr>
</tbody>
</table>
Fit to CMB and BAO data

\[\xi = \frac{\dot{\phi} H}{H_0^2} \]

<table>
<thead>
<tr>
<th>Model</th>
<th>extra d.o.f.</th>
<th>terms in (\mathcal{L})</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic</td>
<td>0</td>
<td>(\propto X \Box \phi)</td>
</tr>
<tr>
<td>quartic</td>
<td>1</td>
<td>(\propto X^2 R)</td>
</tr>
<tr>
<td>quintic</td>
<td>2</td>
<td>(\propto X^2 G_{\mu\nu} \phi^{\mu\nu})</td>
</tr>
</tbody>
</table>
Galileon Parameter Space & ISW Effect

Fit to CMB and BAO data

Model	extra d.o.f.	terms in \mathcal{L}
cubic | 0 | $\propto X \Box \phi$
quartic | 1 | $\propto X^2 R$
quintic | 2 | $\propto X^2 G_{\mu\nu}\phi^{\mu\nu}$

$\xi = \dot{\phi}/H_0^2$
Galileon Parameter Space & ISW Effect

Fit to CMB and BAO data

BF to CMB+BAO: Fit to ISW data?

Data from Ferraro et al. '14
Galileon Parameter Space & ISW Effect

Fit to CMB and BAO data

Fit to ISW data

Data from Ferraro et al. '14

Galileons and CMB, BAO, ISW & H0 data
Galileon Parameter Space & ISW Effect

scale: $k = 0.01/\text{Mpc}$

Data from Ferraro et al. '14

Fit to ISW data

27/07/2017

Galileons and CMB, BAO, ISW & H0 data
Galileon Parameter Space & ISW Effect

Test 4: ISW with Galaxies \(z \gtrsim 0.75 \)

scale: \(k = 0.01/\text{Mpc} \)

Data from Ferraro et al. '14

Fit to ISW data
How to test Galileon Gravity

- Neutrino mass bounds
- CMB lensing on largest scales
- BAO measurements
- ISW measurements from high redshifts \((z \gtrsim 0.75)\)

![Graph showing the relationship between \(H_0\) and \(\sum m_\nu\) for different models.](image)
How to test Galileon Gravity

- Neutrino mass bounds
- CMB lensing on largest scales
- BAO measurements
- ISW measurements from high redshifts ($z \gtrsim 0.75$)
- Speed of gravitational waves
 - Bettoni et al. '16
- Weak lensing, structure growth
- Non-linear scales/screening
→ Covariant Galileons are not dead (yet)
Other ISW Probes

Correlation with CMB lensing potential

Correlation with NVSS galaxies

Error bands from Planck '15 results: The integrated Sachs-Wolfe effect
Covariant Galileon

\[g_{\mu\nu} + \phi + \text{Local} + 4\text{-D} + \text{Lorentz theory with } 2^{nd} \text{ order Eqs.} \]

The action of the minimally coupled covariant Galileon model is given by

\[
S[g_{\mu\nu}, \phi] = \int d^4x \sqrt{-g} \left[\sum_{i=2}^5 \mathcal{L}_i[g_{\mu\nu}, \phi] + \mathcal{L}_m[g_{\mu\nu}, \psi_m] \right],
\]

with

\[
\mathcal{L}_2 = c_2 X - \frac{c_1 M^3}{2} \phi,
\]

\[
\mathcal{L}_3 = 2 \frac{c_3}{M^3} X \square \phi,
\]

\[
\mathcal{L}_4 = \left(\frac{M_{Pl}^2}{2} + \frac{c_4}{M^6} X^2 \right) R + 2 \frac{c_4}{M^6} X \left[\square (\phi)^2 - \phi_{;\mu\nu} \phi_{;\mu\nu} \right],
\]

\[
\mathcal{L}_5 = \frac{c_5}{M^9} X^2 G_{\mu\nu} \phi_{;\mu\nu} - \frac{1}{3} \frac{c_5}{M^9} X \left[\square (\phi)^3 + 2 \phi_{;\mu} \phi_{;\mu} \phi_{;\alpha} \phi_{;\alpha} - 3 \phi_{;\mu\nu} \phi_{;\mu\nu} \square \phi \right]
\]
Horndeski's Theory of Gravity

\[g_{\mu\nu} + \phi + \text{Local} + 4\text{-D} + \text{Lorentz theory with } 2^{nd} \text{ order Eqs.} \]

\[
G_2(X, \phi) - G_3(X, \phi)\Box \phi + G_4(\phi, X) R + G_{4,X} \left[(\Box \phi)^2 - \phi_{;\mu\nu} \phi^{;\mu\nu} \right] \\
+ G_5 G_{\mu\nu} \phi^{;\mu\nu} - \frac{G_{5,X}}{6} \left[(\Box \phi)^3 - 3(\Box \phi) \phi_{;\mu\nu} \phi^{;\mu\nu} + 2\phi_{;\mu}^{;\nu} \phi_{;\nu}^{;\lambda} \phi_{;\lambda}^{;\mu} \right]
\]

\[X \equiv -(\partial \phi)^2 / 2 \]

\[G_4 = \frac{1}{16\pi G} \]

\[\text{GR, with } \quad G_4 = \frac{1}{16\pi G} \]

\[\text{Quintessence, } f(R) \]

\[\text{Covariant Galileons:} \]

- shift symmetry: \[\partial_{\mu} \phi \rightarrow \partial_{\mu} \phi + b_{\mu} \]
- no quantum corrections to any loop order in perturbation field theory

\[G_2 = -(\partial \phi)^2, \quad G_3 = c_3(\partial \phi)^2, \quad G_4, G_5 \propto (\partial \phi)^4 \]