How neutrinos can kill cosmological models

or

Bad νs for quintessence

Sunny Vagnozzi

The Oskar Klein Centre for Cosmoparticle Physics

Advances in theoretical cosmology in light of data

Stockholm, July 2017
“What can neutrinos do for cosmology?”

Michael Turner, Advances in Theoretical Cosmology in Light of Data, week 1
Idea: neutrinos as a test of cosmological models

\[\Sigma m_\nu > 0.06 \text{ eV} \quad \text{vs.} \quad \Sigma m_\nu > 0.10 \text{ eV} \]
Idea: neutrinos as a test of cosmological models

- Choose your favourite cosmological model
- Parametrize it appropriately if needed
- Derive bounds on M_ν within your chosen model **imposing a lower prior** $M_\nu > 0 \text{ eV}$ (ignore oscillation measurements)
- Are your bounds consistent with oscillation data ($M_\nu > 0.06 \text{ eV}$)?
 - **YES**: Great! Your model isn’t ruled out (yet)!
 - **NO**: Might want to reconsider your model...

How can cosmology measure neutrino masses?

ISW effect

TT spectrum

Lensing effect

Matter spectrum

Power at small scales

Turning-point position

Abazajian et al, 2013

BB spectrum

Lensing potential spectrum

Courtesy of Martina Gerbino
Quintessence

Single, minimally-coupled scalar \(\phi \), with canonical kinetic term

Ratra & Peebles 1988; Wetterich 1988; Caldwell, Dave & Steinhardt 1998

Lagrangian:

\[
\mathcal{L}_{\phi} = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - V(\phi)
\]

Pressure and energy density:

\[
\rho_{\phi} = \frac{1}{2} \dot{\phi}^2 + V(\phi), \quad P_{\phi} = \frac{1}{2} \dot{\phi}^2 - V(\phi)
\]

Equation of state is **non-phantom**:

\[
w_{\phi} = \frac{\frac{1}{2} \dot{\phi}^2 - V(\phi)}{\frac{1}{2} \dot{\phi}^2 + V(\phi)} \geq -1
\]
Quintessence

Essentially two classes of quintessence models:

Caldwell & Linder 2005; Linder 2006; Huterer & Peiris 2007

THAWING

- φ frozen at early times due to Hubble friction
- φ starts rolling at late times when friction is subdominant
- $w \approx -1$ at early times
- $w > -1$ at late times
- $w(z)$ monotonically convex decreasing function of z and non-phantom

FREEZING

- φ rolls at early times due to steep potential
- φ frozen at late times due to shallower potential
- $w > -1$ at early times
- $w \approx -1$ at late times
- $w(z)$ monotonically convex increasing function of z and non-phantom
Quintessence parametrizations

THAWING

1CPL parametrization:
Chevallier & Polarski 2001; Linder 2003

\[w(z) = w_0 + w_a \frac{z}{1 + z} \]

Dark energy density:

\[\rho_q(a) = \rho_{DE,0} a^{-3(1+w_0+w_a)} \times e^{-3w_a(1-a)} \]

FREEZING

7CPL parametrization:
Pantazis et al. 2016

\[w(z) = w_0 + w_a \left(\frac{z}{1 + z} \right)^7 \]

Dark energy density:

\[\rho_q(a) = \rho_{DE,0} a^{-3(1+w_0+w_a)} \times e^{-3w_a\left(H_7 - 7a_3 F_2(1,1,-6;2,2;a)\right)} \]
Quintessence priors

THAWING

1CPL parametrization:

\[w(z) = w_0 + w_a \frac{z}{1 + z} \]

Thawing priors:
- \(w_0 > -1 \)
- \(w_a < 0 \)
- \(w_0 + w_a > -1 \)

FREEZING

7CPL parametrization:

\[w(z) = w_0 + w_a \left(\frac{z}{1 + z} \right)^7 \]

Freezing priors:
- \(w_0 > -1 \)
- \(w_a > 0 \)
Results

Data: Planck temperature and low-\(\ell \) polarization (\(Planck TT + lowP \)), BAO measurements (DR11 CMASS and LOWZ, 6dFGS, MGS), and supernovae luminosity distances (JLA)

THAWING
- \(w_0 = -0.936^{+0.019}_{-0.038} \) (68% C.L.)
- \(-0.037 < w_a < 0 \) (95% C.L.)
- \(M_\nu < 0.058 \) eV (95% C.L.)

FREEZING
- \(-1 < w_0 < -0.969 \) (95% C.L.)
- \(0 < w_a < 0.567 \) (95% C.L.)
- \(M_\nu < 0.063 \) eV (95% C.L.)
Results

THAWING

FREEZING
Physical explanation

- As $w(z) > -1$ and moves towards 0, the behaviour of quintessence may resemble that of matter.
- Another way to see this is that there is more dark energy in the near past than for simple ΛCDM...
- ...so the relative energy density of matter has to decrease...
- and hence the contribution of massive neutrinos!

$\Pi_{m,\Lambda}(z)/\Pi_{m,q}(z)$ relative contribution to energy density of matter for Λ/quintessence

\[
\Pi_{m,\Lambda}(z) \equiv \frac{\rho_m(z)}{\rho_m(z) + \rho_{\Lambda}(z)}
\]

\[
\Pi_{m,q}(z) \equiv \frac{\rho_m(z)}{\rho_m(z) + \rho_q(z)}
\]
Physical explanation

Shift in $\Omega_m h^2$ to lower values due to having more dark energy in the past with quintessence than with Λ

Corresponding shift in M_ν since:

$$\Omega_m h^2 \supset \Omega_\nu h^2 \approx \frac{M_\nu}{93 \text{ eV}}$$
Non-phantom dark energy beyond quintessence?

Assume:

- CPL parametrization: \(w(z) = w_0 + w_a \frac{z}{1+z} \)
- Non-phantom priors: \(w_0 > -1 \) and \(w_0 + w_a > -1 \)
- Same datasets used previously

Result:

\[M_\nu < 0.059 \text{ eV} \quad (95\% \text{ C.L.}) \]

Note: the CPL parametrization is used by essentially the whole cosmology community, including big current and future collaborations (e.g. Planck, BOSS, KiDS, etc.), as it is an excellent low-redshift parametrization of most smooth dark energy models.
Conclusions

- Neutrinos can be used as a consistency check of cosmological models
- Neutrinos provide a robust tool to test dark energy models
- Quintessence models appear to need low values of M_ν in conflict with oscillation data ($M_\nu < 0.06$ eV)
- Same results seem to apply to smooth non-phantom dynamical dark energy models
- **Is this the end of quintessence or maybe more generally non-phantom dark energy?** (let you decide)